
Efficient Out-of-Distribution Detection Using Latent Space
of 𝛽-VAE for Cyber-Physical Systems

SHREYAS RAMAKRISHNA, Vanderbilt University
ZAHRA RAHIMINASAB, Nanyang Technological University
GABOR KARSAI, Vanderbilt University
ARVIND EASWARAN, Nanyang Technological University
ABHISHEK DUBEY, Vanderbilt University

Deep Neural Networks are actively being used in the design of autonomous Cyber-Physical Systems (CPSs). The
advantage of these models is their ability to handle high-dimensional state-space and learn compact surrogate
representations of the operational state spaces. However, the problem is that the sampled observations used
for training the model may never cover the entire state space of the physical environment, and as a result,
the system will likely operate in conditions that do not belong to the training distribution. These conditions
that do not belong to training distribution are referred to as Out-of-Distribution (OOD). Detecting OOD
conditions at runtime is critical for the safety of CPS. In addition, it is also desirable to identify the context or
the feature(s) that are the source of OOD to select an appropriate control action to mitigate the consequences
that may arise because of the OOD condition. In this paper, we study this problem as a multi-labeled time
series OOD detection problem over images, where the OOD is defined both sequentially across short time
windows (change points) as well as across the training data distribution. A common approach to solving this
problem is the use of multi-chained one-class classifiers. However, this approach is expensive for CPSs that
have limited computational resources and require short inference times. Our contribution is an approach
to design and train a single 𝛽-Variational Autoencoder detector with a partially disentangled latent space
sensitive to variations in image features. We use the feature sensitive latent variables in the latent space to
detect OOD images and identify the most likely feature(s) responsible for the OOD. We demonstrate our
approach using an Autonomous Vehicle in the CARLA simulator and a real-world automotive dataset called
nuImages.

Additional Key Words and Phrases: Cyber-Physical Systems, Deep Neural Networks, Out-of-Distribution,
Disentanglement, 𝛽-Variational Autoencoders, Mutual Information Gap.

1 INTRODUCTION
Significant advances in Artificial Intelligence (AI) andMachine Learning (ML) are enabling dramatic,
unprecedented capabilities in all spheres of human life, including Cyber-Physical Systems (CPSs).
The fundamental advantage of AI methods is their ability to handle high-dimensional state-space
and learn decision procedures or control algorithms from data rather than models. This is because
high-dimensional real-world state spaces are complex and intractable for mathematical modeling
and analysis. As such it is common to find AI components like Deep Neural Networks (DNNs)
in real-world CPSs such as autonomous cars [6, 56], autonomous underwater vehicles [17], and
homecare robots [39]. However, there is still a gap in the safety and assurance of AI-driven CPSs as
shown by well known incidents in recent past [40, 72]. The technical debt is fundamentally in the
black-box nature of AI components, which hinders the use of classical software testing strategies
(e.g., code coverage, function coverage). There is research progress on testing [54, 68], however,
wide-spread applicability remains questionable. The problem is exacerbated due to the way the
systems are being designed.

Authors’ addresses: Shreyas Ramakrishna, shreyas.ramakrishna@vanderbilt.edu, Vanderbilt University; Zahra Rahiminasab,
RAHI0004@e.ntu.edu.sg, Nanyang Technological University; Gabor Karsai, gabor.karsai@vanderbilt.edu, Vanderbilt Uni-
versity; Arvind Easwaran, arvinde@ntu.edu.sg, Nanyang Technological University; Abhishek Dubey, abhishek.dubey@
vanderbilt.edu, Vanderbilt University.

ar
X

iv
:2

10
8.

11
80

0v
1

 [
cs

.L
G

]
 2

6
A

ug
 2

02
1

2 S. Ramakrishna et al.

The Safety Conundrum: CPS design flows focus on designing a system 𝑆 that satisfies some
requirements 𝑅 in an environment 𝐸. During the design process, the developer selects component
models, each including a parameter vector and typed ports representing the component interface,
from a repository and defines an architectural instance1 𝐴𝑆 of the system such that 𝐴𝑆 ∥ 𝐸 |= 𝑅,
while satisfying any compositional constraints across the component boundaries, often specified
as pre-conditions and post-conditions [15]. The difficulty in this process is that in practice the
environment is only approximated using a surrogate model 𝐸 or a set of observations | ˜̂𝐸 | collected
from real-world data. It is clear that 𝐴𝑆 ∥ ˜̂

𝐸 |= 𝑅 does not imply 𝐴𝑆 ∥ 𝐸 |= 𝑅. In this sense, the
system is being deployed with the assumption that ˜̂

𝐸 ≈ 𝐸. However, this is not a strong guarantee
and could result in scenarios where the designed architecture may fail in the physical environment.
Hence, runtime monitoring of the system is required to identify when ˜̂

𝐸 ̸ |= 𝐸 i.e., the observed
samples are Out-of-Distribution (OOD) with the real environment.

To contextualize the problem, consider the case of a perception DNN that consumes a stream of
camera images to predict control actions (e.g., steer and speed) for autonomous driving tasks such
as end-to-end driving [6]. In this context, the stream of images can be categorized as scenes. A
scene is short time series of similar images contextualized by certain environmental features such
as weather, brightness, road conditions, traffic density, among others, as shown in Fig. 1. These
features are referred to as semantic labels [52] or generative factors [29], and in this paper, we
refer to them as features. These features can take continuous or discrete values, and these values
can be sampled for generating different scenes as shown in Fig. 1. The images from these scenes
are collectively used for training the DNN. These features effectively specify the context in which
the system is operating and influence the sensitivity and correctness of the DNN’s predictions,
especially in cases where the features representing the scenes used for training do not cover all the
values found in real-world. In this work, we primarily focus on perception DNNs, so we define the
problem in terms of images.

Problem Definition: The problem, in this case, is to identify: (a) if the current image of the
operational scene is OOD with respect to the training set, and (b) feature(s) likely responsible for
the OOD. By this, we mean that if the training set used to train a DNN did not include the scenes
with heavy rain, then we want to identify during operation that the OOD is due to precipitation. In
addition, as the images received by CPSs are in time series, it is important to identify if the current
image has changed with respect to the previous images in the time series. Identifying these changes
is referred to as change point detection in literature. Change points in the values of a feature can
increase the system’s risk, as illustrated in our previous work [26]. So, it is critical to identify these
change points during operation. Formally, we summarize the problems as follows: Problem 1a -
identify if the current image is OOD with respect to the training set. Problem 1b - identify the
feature(s) most likely responsible for the OOD, and Problem 2 - identify if the current image is OOD
to the previous images in time series.

State-of-the-art: Multi-chained one-class classifiers [70] are commonly used for solving the
multi-label anomaly detection problem. But the performance of these chains deteriorates in the
presence of strong label correlation [80]. Additionally, training one classifier for each label gets
expensive for real-world datasets which have a large label set [58]. Another problemwith traditional
classifiers like Principal Component Analysis [60], Support Vector Machine [63], and Support Vector
Data Description (SVDD) [77] is that they fail in images due to computational scalability [62].

To improve the effectiveness of the classifiers, researchers have started investigating probabilistic
classifiers like Generative Adversarial Network (GAN) [23] and Variational Autoencoder (VAE) [36].
1 An architectural instance of a design is a labeled graph where nodes are the ports of the components, and the edges
represent interactions between the ports.

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 3

Time-of-Day Weather

Image

Road-segments

Evening Night Precipitation Snow Cloudy R1 R2 R3

Low
med
high

Low
med
highR1

Brightness = 0%
Precipitation = 22%
Day

R2
Brightness = 20%
Precipitation = 0%
Day

R1
Brightness = 50%
Precipitation = 50%
Day

CARLA Simulation

Scene1 Scene2 Scene3

None None
Day

(a) (b)

Fig. 1. Scenes and feature representations: (a) scenes with feature labels from CARLA simulation, (b)
hierarchical representation of an image using its features. The features can take discrete or continuous values.

GAN has emerged as the leading paradigm in performing unsupervised and semi-supervised OOD
detection [1, 81], but problems of training instability and mode collapse [10, 75] have resulted in
VAE based methods being used instead. In particular, the VAE based reconstruction approach has
become popular for detecting OOD data [2, 8]. However, this approach is less robust in detecting
anomalous data that lie on the boundary of the training distribution [12]. To address this, the
latent space generated by a VAE is being explored [12, 66, 71]. The latent space is a collection of
latent variables (𝐿), where each latent variable is a tuple defined by the parameters (𝜇,𝜎) of a latent
distribution (𝑧) and a sample generated from the distribution. However, the traditional approach of
just training a single VAE on all input data leads to unstructured and entangled distributions [38],
which makes the task of isolating the feature(s) responsible for OOD hard.

This paper: Our approach in this work is to investigate use of latent space disentanglement
for detecting OOD images used by perception DNNs. This idea builds upon recent progress in
structuring and disentangling the latent space [5, 29]. Effectively, the latent space generated by
the encoder of a VAE is a Gaussian mixture model of several overlapping and entangled latent
variables, each of which encodes information about the image features. However, as can be seen in
Fig. 2-a, the latent variables form a single large cluster which makes it hard to use them for OOD
detection. Disentanglement is a state of the latent space where each latent variable is sensitive to
changes in only one feature while being invariant to changes in the others [5]. That is, the single
large cluster of Fig. 2-a is separated into several smaller clusters of single latent variables if the
features are independent. Such disentangled latent variables have been successfully used in several
tasks like face recognition [55, 69], video predictions [30], and anomaly detection [76]. However,
disentangling all the latent variables is extremely hard for real-world datasets and is shown to be
highly dependent on inductive biases [44] and feature correlations.
Nevertheless, even partially disentangling the latent variables can lead to substantial gains as

shown by Jakab et al. [32] and Mathieu et al. [49]. Partial disentanglement is a heuristic that groups
the most informative latent variables into one cluster and the remaining latent variables that are
less informative into another, as shown in Fig. 2-c. This selective grouping enables better separation
in the latent space for the train and test images as shown in Fig. 10 (see Section 5). However, the
procedure for training a disentangled latent space for real-world CPSs is hard. As a result, it is one
of the aspects we focus on in this paper, along with interpreting the source of the OOD.

Our Contributions: We present an approach to generate a partially disentangled latent space
and learn an approximate mapping between the latent variables and the image features to perform
OOD detection and reasoning. The steps in our approach are data partitioning, latent space encod-
ing, latent variable mapping, and runtime anomaly detection. To generate the partially disentangled
latent space, we use a 𝛽-Variational Autoencoder (𝛽-VAE), which has a gating parameter 𝛽 that can
be tuned to control information flow between the features and the latent space. For a specific com-
bination of 𝛽 > 1 and the number of latent variables (𝑛), the latent space gets partially disentangled

4 S. Ramakrishna et al.

(a) (b) (c) (d)

Fig. 2. Visualizing Latent Space Disentanglement: Scatter plots illustrating the latent distributions (𝜇,
log(𝜎2)) generated using a 𝛽-VAE with different 𝛽 values. Each latent distribution in the latent space is
represented using distinct color shades. CARLA images generated in Section 5 was used to generate these
latent distributions. For 𝛽=1, the generated latent distributions are entangled. For 𝛽 > 1, the latent distributions
are partially disentangled with a few latent distributions (inside the red circle) encoding independent features
moving close to 𝜇=0 and log(𝜎2)=0, and the others moving away. Plot axis: x-axis represents the mean of the
latent distributions in the range [-5,5], and the y-axis represents the log of variance in the range [-5,5].

with few latent variables encoding most of the feature’s information, while the others, encoding
little information. We present a Bayesian Optimization heuristic to find the appropriate combination
of the 𝛽 and 𝑛 hyperparameters. The heuristic establishes disentanglement as a problem of tuning
the two hyperparameters. The selected hyperparameters are used to train a 𝛽-VAE that is used
by a latent variable mapping heuristic to select a set of most informative latent variables that are
used for detection and identify the sensitivity of the latent variables towards specific features. The
sensitivity information is used for reasoning the OOD images. Finally, the trained 𝛽-VAE along with
the selected latent variables are used at runtime for OOD detection and reasoning. We demonstrate
our approach on two CPS case studies: (a) an Autonomous Vehicle (AV) in CARLA simulator [14],
and (b) a real-world automotive dataset called nuImages [52].

Outline: The outline of this paper is as follows. We formulate the OOD detection problem in
Section 2. We introduce the background concepts in Section 3. We present our OOD detection
approach in Section 4. We discuss our experiment setup and evaluation results in Section 5. Finally,
we present related research in Section 6 followed by conclusions in Section 7.

2 PROBLEM FORMULATION
To set up the problem, consider a CPS that uses a perception DNN trained on image distribution
T , where T = {𝑠1, 𝑠2, . . . , 𝑠𝑖 } is a collection of scenes. A scene is a collection of sequential images
{𝐼1, 𝐼2, . . . , 𝐼𝑚} generated from a training distribution 𝑃 (T). Every image in a scene is associated
with a set of discrete or continuous valued labels (𝐼 → 2L) belonging to the generative features of
the environment (see Fig. 1). It is important to note that the sampling rate of images depends on
the dynamics of the system. With this model, we can define the problems we study as follows:

Problem 1. Given a test image 𝐼𝑡 , determine (a) if 𝐼𝑡 ∈ 𝑃 (T), and (b) if (𝐼𝑡 ∉ 𝑃 (T)) then identify
the feature 𝑓 whose 𝐿𝑎𝑏𝑒𝑙 (𝐼𝑡 , 𝑓) ∉ 𝑃𝑓 (T), where 𝑃𝑓 is the training distribution on the feature 𝑓 .

Example. To illustrate the problem, we trained an NVIDIA DAVE-II DNN [6] to perform e2e driving
of an AV in CARLA simulation. We trained the network on camera images from scene1 and scene2
(see Fig. 1) to predict the steering control action for the AV. As shown in Fig. 3-a, the network’s
steering predictions were accurate when tested on images from training scenes. However, the predictions
got erroneous when we used the network to predict on images of a new scene (scene3) with higher
precipitation values outside the training distribution (Fig. 3-b). The error in steering predictions caused
the AV crash of a sidewall. For this reason, if we knew that the precipitation level is compromising the

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 5

0 5 10 15 20

0

1

2

Time (s)

N
or
m
al
iz
ed

St
ee
rin

g
A
ng

le

0 5 10 15 20

0

1

2

Time (s)
0 5 10 15 20

0

1

2

Time (s)

(a) (b) (c)
Fig. 3. Problem illustration: We trained an NVIDIA DAVE-II DNN with images from scene1 and scene2
(Fig. 1) to predict the steering values of an AV that travels on a straight road segment in CARLA simulator.
We tested the network on three test scenes: (a) A scene that had precipitation and brightness values within
the training distribution, (b) A scene with high precipitation (60%) that was not in the training distribution.
For this scene, the DNN predictions deviate from the nominal value shown in the plot a, and (c) A scene
where brightness value changed from low (20%) to high (50%) at 𝑡 = 10 seconds. The DNN predictions were
accurate until 𝑡 = 10 seconds, thereafter the predictions got erroneous.

network’s predictions, we can switch to an alternative controller that operates on other sensor inputs
(e.g., Radar or Lidar) rather than the camera images.

Problem 2. Given the test image 𝐼𝑡 at time 𝑡 , the goal is to determine if 𝐼𝑡 has changed with respect
to the previous images in a time series window (𝐼 [𝑡 −𝑀 + 1], . . . , 𝐼 [𝑡]), where𝑀 is the window size.

Example. To illustrate the problem, we use the same AV setup discussed in problem1. We tested the
trained network on a new scene (scene4) with low brightness (in-distribution) for up to ten seconds, and
the brightness was briefly high (OOD) for the next ten seconds. For this scene, the network predicted
accurately for the first ten seconds and erroneously for the next ten seconds as shown in Fig. 3-c. Such
an abrupt change in the image feature increases the AV’s risk of collision as demonstrated in our
recent work [26]. So, identifying the change points can be beneficial for reducing the system’s risk of a
consequence.

Detector Requirements: We evaluate OOD detectors that solve these problems against the
following properties.
• Robustness - The detector should have low false positives and false negatives. A well known
metric to measure robustness is F1-score = (2 ·𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·𝑅𝑒𝑐𝑎𝑙𝑙) ÷ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙). Precision
is computed as 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑁), and Recall is computed as 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑃). Where TP is True
positive, FP is False positive, and FN is false negative.

• Minimum Sensitivity (MS) - The detector should have a minimum sensitivity towards each
feature [48]. For an image 𝐼𝑡 with feature labels L={𝑙1, 𝑙2, · · · 𝑙𝑘 }, minimum sensitivity is defined
as the minimum value of the detector’s sensitivity for each feature label. 𝑀𝑆 = 𝑚𝑖𝑛{𝑆𝑖; 𝑖 =

1, 2, · · · , 𝑘}, where 𝑆𝑖 is the sensitivity of the detector to the feature 𝑖 . Recall has been a well
known metric to measure the detector’s sensitivity.

• Low Computation Overhead - Our target platforms are resource constrained autonomous CPSs
like DeepNNCar [57]. Therefore, the detector should have a low resource signature.

• Low Execution time - Autonomous CPSs typically have a small sampling period (typically 50 to
100 milliseconds). Therefore, the detector should have a low execution time that is smaller than
the system’s sampling period.

3 BACKGROUND
In this section, we provide an overview of several basic concepts that are required to understand
our OOD detection approach.

6 S. Ramakrishna et al.

3.1 Kullback-Leibler (KL) divergence
KL-divergence [16] is a non-symmetric metric that can be used to measure the similarity between
two distributions. For any probability distribution 𝑝 and 𝑞 the KL-divergence can be computed as
illustrated in Eq. (1). A KL-divergence value close to zero indicates the two distributions are similar,
while a larger value indicates their dissimilarity.

𝐷𝐾𝐿 (𝑝 | |𝑞) =
∑︁
𝑥 ∈𝜒

𝑝 (𝑥)𝑙𝑜𝑔𝑝 (𝑥)
𝑞(𝑥) (1)

Recently, the KL-divergence metric is being utilized in several ways: (a) training loss function of
different generative models (e.g., VAE) called the Evidential Lower Bound (ELBO) [37], and (b) OOD
detection metric [71] that measures if the latent distributions generated by a generative model
deviate from a standard normal distribution. The metric can be computed as shown below.

𝐾𝐿(𝑥) = 𝐷𝐾𝐿 (𝑞𝜙 (𝑧𝑖 |𝑥) | |N (0, 1)) (2)
Where, N(0, 1) is a standard normal distribution. 𝑞𝜙 (𝑧𝑖 |𝑥) is the distribution generated by the

encoder of a VAE for a latent variable 𝐿𝑖 , and input 𝑥 .

3.2 𝛽-Variational Autoencoder (𝛽-VAE)
𝛽-Variational Autoencoder [29] is a variant of the original VAE with a 𝛽 hyperparameter attached
to the KL-divergence (second term) of the ELBO loss function shown in Eq. (3). The network has an
encoder that maps the input data (𝑥) distribution 𝑃 (𝑥) to a latent space (𝑧) by learning a posterior
distribution 𝑞𝜙 (𝑧 |𝑥). The decoder then reconstructs a copy of the input data (𝑥 ′) by sampling the
learned distributions of the latent space. In doing so, the decoder also learns a likelihood distribution
𝑝𝜃 (𝑥 |𝑧). The latent space is a collection of 𝑛 latent variables that needs to be selectively tuned in
accordance with the input dataset. To remind, a latent variable is a tuple defined by the parameters
(𝜇,𝜎) of a latent distribution (𝑧) and a sample generated from the distribution.

𝐸𝐿𝐵𝑂 (𝜃, 𝜙, 𝛽 ;𝑥, 𝑧) = E𝑞𝜙 (𝑧 |𝑥) [𝑙𝑜𝑔𝑝𝜃 (𝑥 |𝑧)] − 𝛽𝐷𝐾𝐿 (𝑞𝜙 (𝑧 |𝑥) | |𝑝 (𝑧)) (3)
𝜃 and 𝜙 parameterize the latent variables of the encoder and the decoder, and 𝐷𝐾𝐿 is the KL-

divergence metric discussed in Section 3.1. The first term computes the similarity between the
input data 𝑥 and the reconstructed data 𝑥 ′. The second term computes the KL-divergence between
𝑞𝜙 (𝑧 |𝑥) and a predefined distribution 𝑝𝜃 (𝑥 |𝑧), which is mostly the standard normal distribution
N(0, 1).

Tuning 𝛽 for disentanglement: As suggested by Higgins et al. [29], 𝛽 controls the amount of
information that flows from the features to the latent space, and an appropriate hyperparameter
combination of 𝛽 > 1 and 𝑛 is shown to disentangle the latent space for independent features. Fig. 2
shows the latent space disentanglement for different values of 𝛽 while 𝑛 is fixed to 30. For 𝛽 = 1,
the latent distributions are entangled. With 𝛽 > 1, the latent space starts to partially disentangle
with a few latent variables (inside the red circle) encoding most information about the features stay
as a cluster close to 𝜇=0 and log(𝜎2)=0, and the others are uninformative and form a cluster that
lies farther. However, as the 𝛽 value gets larger (𝛽=1.9), the information flow gets so stringent that
the latent space becomes uninformative [49]. So, finding an appropriate combination of 𝛽 and 𝑛 for
disentanglement is a hard problem. To address this problem, we provide a heuristic in Section 4.2.

3.3 Mutual Information Gap (MIG)
Mutual Information Gap is a metric proposed by Chen, Ricky TQ et al. [9] to measure the latent
space disentanglement. It is an information theoretic metric that measures the mutual information

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 7

Algorithm 1 Computing MIG
Parameter: number of latent variables 𝑛, image features F, number of iterations 𝑡 , trained 𝛽-VAE
Input: data partition P = {𝑃1, 𝑃2,, 𝑃𝑚 }
Output: average MIG
1: while 𝑖 ≤ 𝑡 do
2: Generate latent variable parameters (𝜇, 𝜎) using a trained 𝛽-VAE
3: for each 𝑃 ∈ P do
4: Extract 𝜇, 𝜎 parameters
5: Compute feature entropy H(f)
6: Compute latent variable entropies 𝐻 (𝐿𝑗) and 𝐻 (𝐿′

𝑗
)

7: Compute conditional entropies 𝐻 (𝐿𝑗 |𝑓) and 𝐻 (𝐿′
𝑗
|𝑓)

8: Compute Mutual Information of most informative latent variable 𝐼1 (𝐿𝑗 ; 𝑓) = 𝐻 (𝐿𝑗) −𝐻 (𝐿𝑗 |𝑓)
9: Compute Mutual Information of second most informative latent variable 𝐼2 (𝐿′𝑗 ; 𝑓) = 𝐻 (𝐿′

𝑗
) −𝐻 (𝐿′

𝑗
|𝑓)

10: end for
11: compute𝑀𝐼𝐺 = 1

|P |
∑
𝑓 ∈P

1
𝐻 (𝑓) (𝐼1 (𝐿𝑗 ; 𝑓) − 𝐼2 (𝐿

′
𝑗
; 𝑓))

12: Append MIG to 𝐿
13: end while
14: return average MIG = sum(𝐿)/𝑡

between features and the latent variables. It measures the average difference between the empirical
mutual information of the two most informative latent variables for each feature and normalizes
this result by the entropy of the feature. MIG is computed using the following equation.

𝑀𝐼𝐺 =
1
|F |

∑︁
𝑓 ∈F

1
𝐻 (𝑓) (𝐼1 (𝐿𝑗 ; 𝑓) − 𝐼2 (𝐿

′
𝑗 ; 𝑓)) (4)

𝐼1 (𝐿 𝑗 ; 𝑓) represents the empirical mutual information between the most informative latent
variable 𝐿 𝑗 and the feature 𝑓 . 𝐼2 (𝐿′𝑗 ; 𝑓) represents the empirical mutual information between the
second most informative latent variable 𝐿′𝑗 and the feature 𝑓 . 𝐻 (𝑓) is the entropy of information
contained towards the feature 𝑓 . In this work, we use MIG as a measure for selecting the right
hyperparameter combination (𝛽 and 𝑛) for the 𝛽-VAE.

Implementation: We have implemented Algorithm 1 to compute MIG. Since MIG is computed
based on entropy, the training set T should have images with feature labels that take different
discrete and continuous values as shown in Fig. 1. For the ease of computation, we partition T
into different partitions P using our approach discussed in Section 4.1. Our approach is to create
partitions such that each partition will have images that have a variance in the value of a specific
feature 𝑓 , irrespective of the variance in the others. The feature with the highest variance represents
the partition. Then, in each iteration, we use the feature representing the partition to compute the
feature entropy, the conditional entropy, and the mutual information of the two most informative
latent variables. The mutual information is then used to compute the MIG as shown in the algorithm.
Finally, for robustness, we average the MIG across 𝑡 iterations.

Complexity Analysis: The complexity of the MIG algorithm in worst case is 𝑂 (𝑡 ∗ |P| ∗ 𝑛𝑞 ∗
|F | ∗ |T | ∗ 𝑛2 ∗ 𝑛𝑠). Where 𝑡 is the number of iterations, |P | is the number of partitions, 𝑛 is
the number of latent variables, |F | is the number of features considered for the calculations, 𝑛𝑞
is the number of unique values that each feature has in the partition (e.g., for a partition with
brightness=10%, and brightness=20%, 𝑛𝑞=2), 𝑛𝑠 is the number of samples generated from each
latent variable, and |T | is the size of training data. The specific values of these parameters for the
AV example in CARLA simulation are 𝑡 = 5, |𝑝 | = 2, 𝑛 = 30, F = 2, 𝑛𝑠 = 500, and 𝑛𝑞=3.

8 S. Ramakrishna et al.

3.4 Inductive Conformal Prediction (ICP)
Inductive Conformal Prediction is a variant of the Conformal Prediction algorithm [74] that tests if a
test observation (𝑥𝑡) conforms to every observation in the training dataset (T). However, comparing
𝑥𝑡 to every observation of T is expensive and gets complex with the size of T . To address this,
ICP splits T into two non-overlapping sets called as the proper training set (T𝑃) which is used to
train the prediction algorithm (e.g., DNN) and the calibration set (C) which is used to calibrate the
test observations. In splitting the datasets, ICP performs a comparison of the 𝑥𝑡 to each element in
the C which is a smaller representative set of T . The ICP algorithm has two steps: The first step
involves, computing the non-conformity measure, which represents the dissimilarity between 𝑥𝑡 to
the elements in the set C. The non-conformity measure is usually computed using conventional
metrics like euclidean distance or K-nearest neighbors. But, in this work we use KL-divergence
as the non-conformity measure. The next step involves computing the p-value, which serves as
evidence for the hypothesis that 𝑥𝑡 conforms to C. Mathematically, the p-value is computed as the
fraction of the observations in C that have non-conformity measure above the test observation 𝑥𝑡 :
𝑝𝑥𝑡 = |{∀𝛼 ∈ C|𝛼 ≥ 𝛼𝑥𝑡 }|/|C|. Note for brevity, we drop the notation of 𝑥 and just use the term 𝑝𝑡
and 𝛼𝑡 . Here 𝛼 denotes the non-conformity measure for each observation in C and 𝛼𝑡 denotes the
non-conformity measure for 𝑥𝑡 .
Once 𝑝𝑡 is computed, it can be compared against a threshold 𝜏 ∈ (0,1) to confirm if 𝑥𝑡 belongs

to T . However, such a threshold-based comparison is only valid if each test observation is i.i.d
(independent and identically distributed) to T , which is not true for CPSs [8]. Although the
assumptions about i.i.d are not valid, ICP can still be applied under the weaker assumption of
exchangeability. In our context, exchangeability means to test if the observations in C have the
same joint probability distribution as the sequence of the test observations under consideration (are
they permutations of each other). If they are, then we can expect the p-values to be independent
and uniformly distributed in [0, 1] (Theorem 8.2, [74]), which can be tested using the martingale.
Exchangeability martingale [18] has been used as a popular tool for testing the exchangeability
and the i.i.d assumptions of the test observation with respect to C. So, once the p-value for a
test observation is computed, the simple mixture martingale [18] can be computed as M𝑡 =∫ 1
0
[∏𝑡

𝑖=1 𝜖𝑝
𝜖−1
𝑖

]
𝑑𝜖 .

Also, it is desirable to use a sequence of test observations rather than a single observation
for improving the detection robustness. However, the observations received by CPS are in time
series, which makes them non-exchangeable [8]. The non-exchangeability nature hinders the
direct application of the martingale to an infinitely long sequence of test observations. To address
this, the authors in [8] have suggested applying the martingale over a short window of the time
series in which the test observations can be assumed to be exchangeable. Then, the simple mixture
martingale over a short time window [𝑡 −𝑀 + 1, 𝑡] of past𝑀 p-values can be computed asM𝑡 =∫ 1
0
[∏𝑡

𝑖=𝑡−𝑀+1 𝜖𝑝
𝜖−1
𝑖

]
𝑑𝜖 . The martingale will grow over time if and only if there are consistently

low p-values within the time window, and the corresponding test observations are i.i.d. Otherwise,
the martingale will not grow. It is important to note that the martingale computation is only valid
for a short time window. The size of the window is dependent on the CPS dynamics, like the speed
of the system. In our experiments, the system’s speed was constant, so we used a fixed window
size of 20 images.

3.5 Cumulative Sum (CUSUM)
One of the problems we are dealing with is change detection. This problem is traditionally solved
using CUSUM [3], which is a statistical quality control procedure used to identify variation based
on historical data. It is computed as 𝑆0 = 0 and 𝑆𝑡+1 = max(0, 𝑆𝑡+𝑥𝑡 -𝜔), where 𝑥𝑡 is the sample from

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 9

Image
Database

f1

f2

fn

 I1
 I2

 In

P1

-VAE

P1

P2

Pm

j m

1. Dataset Partitioning

2. Latent Space Encoding

3. Latent Variable Mapping 4. Runtime

OOD Detection

Run TimeDesign Time

 I1
 I2

 In

P2

 I1
 I2

 In

Pm

OOD Detection

L1,L2,L3,L4

Change Detection

Partition Information

z
Probabilistic

Encoder
Probabilistic

Decoder

Encoded
Latent Space

L1

L2

L3

Lj

Lj+1

Ln

Latent Variables
L(, , samples)

Partitions {P1,P2,.....,Pm} Most
Informative

Un-
informative L1,L2,L3,L4

Problem 1

Problem 2

Fig. 4. Detector design approach. The steps of our approach include data partitioning, latent space encoding,
latent variable mapping and runtime OOD detection.

a process, 𝜔 is the weight assigned to prevent 𝑆𝑡 from consistently increasing to a large value. 𝑆𝑡
can be compared to a predefined threshold 𝜏 to perform the detection. 𝜔 and 𝜏 are hyperparameters
that decide the detector’s precision.

4 OUR APPROACH
In this section, we present our approach that uses a 𝛽-VAE to perform latent space based OOD
detection and reasoning. Our approach is shown in Fig. 4 and the steps involved work as follows:
First, we divide the multi-labeled datasets into partitions based on the variance in the feature values.
A partition consists of images with one feature having higher variance in its values compared to
others. Second, we generate a partially disentangled latent space using a 𝛽-VAE. As discussed earlier,
the combination of 𝛽 and 𝑛 influence the level of latent space interpretability. To find the optimal
combination, we propose a heuristic that uses the Bayesian Optimization algorithm [65] along
with MIG to measure disentanglement. Third, we discuss a heuristic to perform latent variable
mapping to identify the set of latent variables L𝑑 that encodes most information of the image
features. These latent variables are collectively used as the detector for OOD detection. Further, we
perform a KL-divergence based sensitivity analysis to identify the latent variable(s) L𝑓 ⊆ L𝑑 , that
is sensitive to specific features. The latent variable(s) in L𝑓 are used as reasoners to identify the
OOD causing features. We discuss these steps in the rest of this section.

4.1 Data partitioning
Data partitioning is one of the core steps of our approach. It is required for implementing the MIG
and the latent variable mapping heuristics. We define a partition 𝑃 as a collection of images that
have higher variance in the value of one feature as compared to the variances in the values of
other features. To explain the concept of a partition, consider the features of images in training
set T to be F = {𝑓1, 𝑓2, ..., 𝑓𝑛}, and each feature can take a value either discrete or continuous as
shown in Fig. 1. We normalize these values for the ease of partitioning. Our goal is to group images
in T into𝑚 partitions P = {𝑃1, 𝑃2,, 𝑃𝑚}, such that a partition 𝑃 𝑗 will have all the images with
high variance in the values of feature 𝑓𝑗 . For creating these partitions, we generate sub-clusters
for each discrete valued feature(s) and sub-clusters for each continuous valued feature. In each of

10 S. Ramakrishna et al.

Algorithm 2 Bayesian Optimization Hyperparameter Selection
Parameter: number of iterations 𝑡 , initialization iterations 𝑘 , explored list X
Input: training set T, data partition P, 𝑁 , 𝐵
Output: best 𝑛 and 𝛽
1: for 𝑥 = 1, 2, ..., 𝑡 do
2: if 𝑥 ≤ 𝑘 then
3: Randomly sample 𝑛, 𝛽 from 𝑁 and 𝐵
4: else
5: Find 𝑛, 𝛽 that optimizes the acquisition function over Gaussian Process
6: end if
7: Train 𝛽-VAE on T using the selected 𝑛 and 𝛽
8: Compute Average MIG
9: Append 𝑛, 𝛽 and MIG to X
10: Update the Gaussian Process posterior distribution using X
11: end for
12: return 𝑛 and 𝛽

these sub-clusters, only the value of the feature under consideration 𝑓𝑗 changes while the value of
other features remains unchanged. The clustering is done effectively through an agglomerative
clustering algorithm. Thereafter, the partition for a feature is the union of all sub-clusters which
can be represented as 𝑃 𝑗 = {𝐶1 ∪𝐶2.... ∪𝐶𝑛}. It is important to note that each partition should have
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 > 0 in the value of the feature under consideration (𝑓𝑗), irrespective of changes in the
values of other features. To illustrate the partitioning concept, consider the example scenes in Fig. 1.
A precipitation partition for this example is a collection of images from two combinations, 𝐶1 =
{day, precipitation=22%, brightness=0%, R1}, and 𝐶2 = {day, precipitation=50%, brightness=50%, R1}.

Our data partitioning approach works well for datasets with well defined labels that provide
feature value(s). However, real-world automotive datasets such as nuScenes [7] and nuImages [52]
provide semantic labels that are not always well defined, and they do not contain feature values.
Also, they often have images in which several feature values change at once. Since the feature
related information is not fully available, some prepossessing and thresholds selection for feature
values are required for partitioning. Currently, the threshold selection for partitioning is performed
by a human supervisor, but we want to automate it in the future. We have applied this partitioning
technique on the nuScenes dataset in our previous work [66] and used it in this work for partitioning
the nuImages dataset.

4.2 Latent Space Encoding
The second step of our design procedure is the selection and training of 𝛽-VAE to generate a partially
disentangled latent space encoding. However, the challenge is to determine the best combination
of the 𝛽 and 𝑛 hyperparameters. To find this, we propose a novel greedy heuristic that formulates
disentanglement as a hyperparameter search problem. The heuristic uses Bayesian Optimization
(BO) algorithm with MIG as the objective function to maximize.

Implementation: The BO algorithm builds a probability model of the objective function and
uses it to identify the optimal model hyperparameter(s). The algorithm has two steps: a probabilistic
Gaussian Process model that is fitted across all the hyperparameter points that are explored so far,
and an acquisition function to determine which hyperparameter point to evaluate next [65]. We
use these steps to search for an optimal hyperparameter for n ∈ 𝑁 , and 𝛽 ∈ 𝐵. The heuristic using
BO algorithm is shown in Algorithm 2, and the steps are discussed below.

First, for 𝑘 initial iterations, we randomly pick values for 𝛽 and 𝑛 from the hyperparameter
search space. The randomly selected n and 𝛽 combination is used to train a 𝛽-VAE network and

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 11

compute the MIG as discussed in Algorithm 1. The selected hyperparameters and the computed
MIG are added to an explored list X. After the initial iterations, the trained Gaussian Process model
(the initial iterations are used to train and stabilizes the Gaussian process model) is fitted across
all the hyperparameter points that were previously explored, and the marginalization property
of the Gaussian distribution allows the calculation of a new posterior distribution g(𝑥𝑛) with
posterior belief 𝑔(𝑥𝑛). Finally, the parameters (𝜇, 𝜎) of the resulting distribution are determined to
be used by the acquisition function, which uses the posterior distribution to evaluate new candidate
hyperparameter points.

Second, an acquisition function is used to guide the search by selecting the hyperparameter(s)
for next iteration. For this, it uses the 𝜇 and 𝜎 computed by the Gaussian process. A commonly used
function is the expected improvement (EI) [21, 34], which can described as follows. Consider, 𝑥𝑛
to be some hyperparameter(s) point in the distribution g(𝑥𝑛) with posterior belief 𝑔(𝑥𝑛), and 𝑥+ is
the best hyperparameter(s) in X (explored list), then the improvement of the point 𝑥𝑛 is computed
against 𝑥+ as 𝐼 (𝑥𝑛) = 𝑚𝑎𝑥{0, (𝑔(𝑥+) − 𝑔(𝑥𝑛))}. Then, the expected improvement is computed as
𝐸𝐼 (𝑥𝑛) = E

[
𝐼 (𝑥𝑛) |𝑥𝑛

]
. Finally, the new hyperparameter(s) is computed as the point with the largest

expected improvement as 𝑥𝑛+1 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐸𝐼 (𝑥𝑛)). The new hyperparameter point is used to train
a 𝛽-VAE and compute the MIG, which is then added to the explored list X. The list X is used to
update the posterior distribution of the Gaussian process model in the next iteration. The two steps
of the algorithm are iterated until maximum number of iterations is reached or can be terminated
early if optimal hyperparameter(s) is consecutively selected by the algorithm for 𝑗 iterations (we
chose 𝑗=3 in this work).
Design Space Complexity: Searching for optimal hyperparameters is a combinatorial problem

that requires optimizing an objective function over a combination of hyperparameters. In our
context, the 𝛽-VAE hyperparameters to be selected are 𝛽 and 𝑛, and the objective function to
optimize is the MIG whose complexity we have reported in the previous section. The range of the
hyperparameters are n ∈ {𝑛1, 𝑛2, . . . , 𝑛𝑙 } and 𝛽 ∈ {𝛽1, 𝛽2, . . . , 𝛽𝑚}. The hyperparameter search space
then becomes the Cartesian product of the two sets. In the case of the grid search, each point of
this search space is explored, which requires training the 𝛽-VAE and computing MIG. Grid search
suffers from the curse of dimensionality since the number of evaluations exponentially grows
with the size of the search space [31]. In comparison, the random search and BO algorithms do
not search the entire space but search for a selected number of iterations 𝑡 . While random search
selects each point in the search space randomly, the BO algorithm performs a guided search using
a Gaussian process model and the acquisition function.
In BO algorithm, the first 𝑘 iterations stabilize the Gaussian Process model using randomly

selected points in the space to train a 𝛽-VAE and compute the MIG. After these iterations, the Gauss-
ian process model is fitted to all the previously sampled hyperparameters. Then, the acquisition
function based on expected improvement uses the posterior distribution of the Gaussian process
model to find new hyperparameter(s) that may optimize the MIG. The new hyperparameter(s)
are used to train a 𝛽-VAE and compute the MIG. So, this process is repeated for 𝑡 iterations, and
in every iteration, a 𝛽-VAE is trained, and the MIG is computed as shown in Algorithm 2. This
intelligent search mechanism based on prior information makes the search technique efficient as it
takes a smaller number of points to explore in the search space as compared to both grid search
and random search [31, 65]. The BO algorithm has a polynomial time complexity because the most
time consuming operation is the Gaussian process which takes polynomial time [31]. We report
the experimental results for the three hyperparameter algorithms in Table 1. As seen in the Table,
the BO algorithm takes the least time and iterations to select the hyperparameters that achieve the
best MIG value as compared to the other algorithms.

12 S. Ramakrishna et al.

X(1,1)
z(1,1)

X(2,1)
z(2,1)

X(1,N)
z(1,1)

X(2,N)

z(2,1)

KLdiff

KLdiff

1

2

 KL-divergence
computation

Welford'sVariance
calculator

L1, L2, L3,,Lj, Lj+1,.............Ln

KL-divergence
computation

Partition P1 Partition P2
precip=20% precip=45% Bright=25% Bright=35%

Welford'sVariance
calculator

Fig. 5. Latent Variable Mapping: Heuristic based on KL-divergence and Welford’s variance calculator to
select latent variables for L𝑑 and L𝑓 .

4.3 Latent Variable Mapping
Given the data partition set P and a trained 𝛽-VAE that can generate the latent variable set L, we
find the most informative latent variables set L𝑑 ⊆ L that encodes information about the image
features in the training set T . As discussed earlier, the most informative latent variables form a
separate cluster from the less informative ones when we partially disentangle the latent space using
the BO heuristic. Although the most informative latent variables are separately clustered in the
latent space, we need a mechanism to identify them. To do this, we present a KL-divergence based
heuristic that is illustrated in Fig. 5.
The latent variables in L𝑑 are used as detectors i.e., they can detect overall distribution shifts

in the images (we discuss the exact procedure later). However, this does not solve the problem of
identifying the specific feature(s) whose labels caused the OOD. For this, given the representative
feature 𝑓 of a partition has high variance, we identify the subset of latent variable(s) L𝑓 ⊆ L𝑑
that is sensitive to the variations in 𝑓 . For example, if we have a partition with images that have
different values in the precipitation (e.g., precipitation=20%, precipitation=50%, etc.), then we map
latent variable(s) that are sensitive to changes in precipitation level. The latent variable(s) in L𝑓 is
called the reasoner for feature 𝑓 and is used to identify if 𝑓 is responsible for the OOD. The steps
in our heuristic are listed in Algorithm 3 and it works as follows: For each partition, 𝑃 ∈ P, and for
each scene 𝑠 ∈ 𝑃 , we perform the following steps.
First, we take two subsequent images 𝑥𝑙 and 𝑥𝑙+1 and pass each of them separately to the trained

𝛽-VAE to generate the latent variable set L for each of the images. As a remainder, L is a collection
of 𝑛 latent variables, and each latent variable has a latent distribution (𝑧) with parameters 𝜇 and 𝜎 .
Then, for each latent variable of the images (𝑥) we compute a KL-divergence between its latent
distribution 𝑞(𝑧𝑖 |𝑥) and the standard normal distribution N(0, 1) as discussed in Section 3.1. The
computed KL-divergence is 𝐾𝐿𝑖 (𝑥) = 𝐷𝐾𝐿 (𝑞(𝑧𝑖 |𝑥) | |N (0, 1)).
Second, we calculate the KL-divergence difference between corresponding latent variables of

the two images as: 𝐾𝐿𝑖
𝑙
(𝑑𝑖 𝑓 𝑓) = |𝐾𝐿𝑖 (𝑥𝑙+1) − 𝐾𝐿𝑖 (𝑥𝑙) |. This procedure is repeated across all the

subsequent images in the scene 𝑠 .
Third, we compute an average KL-divergence difference for each latent variable across all the

subsequent images of the scene as follows.

𝐴𝑣𝑔𝐾𝐿𝑖
𝑑𝑖 𝑓 𝑓

=
1

𝑙𝑒𝑛 (𝑠) − 1

𝑙𝑒𝑛 (𝑠)−1∑︁
𝑙=1

𝐾𝐿𝑖
𝑙
(𝑑𝑖 𝑓 𝑓) (5)

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 13

Algorithm 3 Selecting Latent Variables for L𝑑 and L𝑓

Parameter: global list𝐺
Input: data partitions P = {𝑃1, 𝑃2, ..., 𝑃𝑚 }, number of latent variables 𝑛
Output: L𝑑 and L𝑓 for each partition
1: for each 𝑃 ∈ P do
2: for each 𝑠 ∈ 𝑃 do
3: for 𝑙 = 1; 𝑙 <= 𝑙𝑒𝑛 (𝑠) ; 𝑙 = 𝑙 + 1 do
4: for 𝑖 = 0, 1, 2,, 𝑛 do
5: 𝐾𝐿𝑖 (𝑥𝑙) = 𝐷𝐾𝐿 (𝑞𝜙 (𝑧𝑖 |𝑥𝑙) | |N (0, 1))
6: 𝐾𝐿𝑖 (𝑥𝑙+1) = 𝐷𝐾𝐿 (𝑞𝜙 (𝑧𝑖 |𝑥𝑙+1) | |N (0, 1))
7: 𝐾𝐿𝑖

𝑙
(𝑑𝑖 𝑓 𝑓) = |𝐾𝐿𝑖 (𝑥𝑙+1) −𝐾𝐿𝑖 (𝑥𝑙) |

8: end for
9: end for
10: for 𝑖 = 1, 2,, 𝑛 do
11: 𝐴𝑣𝑔𝐾𝐿𝑖

𝑑𝑖 𝑓 𝑓
= 1
𝑙𝑒𝑛 (𝑠)−1

∑𝑙𝑒𝑛 (𝑠)−1
𝑙=1 𝐾𝐿𝑖

𝑙
(𝑑𝑖 𝑓 𝑓)

12: end for
13: Store 𝐴𝑣𝑔𝐾𝐿𝑖

𝑑𝑖 𝑓 𝑓
to𝐺

14: end for
15: Use Welford’s algorithm to select L𝑃 , which is a set of𝑚 latent variables with high variance in 𝐴𝑣𝑔𝐾𝐿𝑖

𝑑𝑖 𝑓 𝑓

16: L𝑓 = max(L𝑃)
17: end for
18: L𝑑 = {L𝑃1 ∪ L𝑃2 ∪ ∪ L𝑃𝑚 }
19: return L𝑑 , {L𝑓1 , L𝑓2 , ..., L𝑓𝑚 }

where 𝐾𝐿𝑖
𝑙
(𝑑𝑖 𝑓 𝑓) is the KL-divergence difference of the latent variable 𝐿𝑖 for the 𝑙𝑡ℎ subsequent

image pair in a scene 𝑠 and 𝑙𝑒𝑛(𝑠) is the number of images in 𝑠 . This value indicates the average
variance in the KL-divergence value across each latent variable for all the images in the 𝑠 . This
approach of computing the variations across 𝑠 is motivated from the manual latent variable mapping
technique in [29]. Further, the 𝐴𝑣𝑔𝐾𝐿𝑖

𝑑𝑖 𝑓 𝑓
value is computed ∀𝑠 ∈ 𝑃 .

Fourth, we then use the Welford’s variance calculator [79] to compute the variance in the
𝐴𝑣𝑔𝐾𝐿𝑖

𝑑𝑖 𝑓 𝑓
value across all the scenes in the partition. Welford’s variance calculator computes and

updates the variance in a single pass as the measurements are available. It does not require storing
the measurements till the end for the variance calculation, which will make the variance calculation
across several scenes faster. In our case, the variance calculator returns a partition latent variable
set L𝑃 , which is a set of top𝑚 latent variables that has the highest 𝐴𝑣𝑔𝐾𝐿𝑖

𝑑𝑖 𝑓 𝑓
across all images in

𝑃 . Selecting an appropriate number of latent variables (𝑚) for L𝑃 is crucial, as we use it to select
the latent variables for L𝑑 and L𝑓 . The value for𝑚 is chosen empirically, and the selection depends
on the variances across the scenes of a partition. However, it is important to note that selecting
a small value for 𝑚 may not include all the informative latent variables required for detection
and choosing a large value for𝑚 may include uninformative latent variables that may reduce the
detection accuracy and sensitivity.
Further, we choose the top latent variable(s) from L𝑃 and use it as the reasoner (L𝑓) for the

partition. If the partition has variance in an independent image feature (e.g., brightness), then a
single best latent variable which has the most sensitivity can be used as the reasoner. However, if
the feature is not independent, then more than one latent variable needs to be used, and the size of
L𝑃 increases. Besides, if two features correlate, then a single latent variable may be sensitive to
both features. If such a latent variable is used for reasoning at runtime, and if it shows variation,
then we attribute both the features to be responsible for the OOD.

14 S. Ramakrishna et al.

Trained -VAE
Encoder Detector

D

Latent
Space

Feature 1
Reasoner

(R1)

Feature m
Reasoner

(Rm)

Martingale &
CUSUM

calculation

OOD or Nominal

OOD Responsible
feature(s)

Avg. KL
Divergence

Avg. KL
Divergence

Test Images

Moving Avg. &
CUSUM

calculation

change points in features
(Problem 2)

(Problem 1b)

Martingale &
CUSUM

calculation

Martingale &
CUSUM

calculation

Avg. KL
Divergence

(Problem 1a)

Fig. 6. Runtime OOD detection pipeline: The trained 𝛽-VAE detector at runtime provides three outputs
that are sent to the decision manager to select an appropriate controller or control action that can mitigate
the OOD problems as discussed in Section 2.

Finally, these steps are repeated for all the partitions in P, and the latent variables for L𝑑 is
formed by {L𝑃1 ∪ L𝑃2 ∪ · · · ∪ L𝑃𝑚 }. If the latent space is partially disentangled, then the top
𝑚 latent variables in each L𝑃 will mostly be the same. Otherwise, the number of similar latent
variables in each L𝑃 will be small.

4.4 Runtime Out-of-Distribution Detection
At runtime, we use the trained 𝛽-VAE and the latent variable setL𝑑 andL𝑓 to detect OOD problems
discussed in Section 2. Fig. 6 shows the pipeline for runtime OOD detection, and it works as follows.
As a test image 𝑥𝑡 is observed, the encoder of the trained 𝛽-VAE is used to generate the latent
space encoding. Then, the respective latent variables in (L𝑑 , L𝑓) are sent to different processes to
compute the average KL-divergence between the latent variables in L𝑑 or latent variable(s) in L𝑓

for the identified features. The KL-divergence is computed between each latent variables in L𝑑 and
L𝑓 , and the normal distribution N(0, 1) as shown in Eq. (6).

𝛼𝑡 = 𝐾𝐿(𝑥𝑡 ,N(0, 1)) = 1
𝐿

𝐿∑︁
𝑙=1

|𝐷𝐾𝐿 (𝑞(𝑧𝑙 |𝑥𝑡) | |N (0, 1)) | (6)

Where 𝐿 is the number of selected latent distributions; for the detector, it is the number of latent
variables in L𝑑 , and for each feature, it is the number of latent variables in L𝑓 .

To detect the first OOD problem (Problem 1), the KL-divergence is used as the non-conformity
score to compute the ICP and martingale score as shown in Algorithm 4. However, as the martingale
can grow large very rapidly, we use the log of martingale. Then, a CUSUM over the log of martingale
is computed to identify when the martingale goes consistently high. The CUSUM value 𝑆𝑡 of the
detector latent variables L𝑑 is compared against a detector threshold (𝜏𝑑) to detect if the image 𝑥𝑡
is OOD compared to the calibration set. Then, the CUSUM value 𝑆𝑡 of the reasoner latent variables
L𝑓 is compared against a reasoner threshold (𝜏𝑟) to identify if the known feature(s) is responsible
for the OOD as discussed in Problem 1b of Section 2. The thresholds are empirically tuned as a
tradeoff between false positives and mean detection delay [3].
To detect the second OOD problem (Problem 2), the latent variables in L𝑑 is used with sliding

windowmoving average and CUSUM for change point detection. For this, the average KL-divergence
of all the latent variables in L𝑑 is computed using Eq. (6), and a moving average of the average
KL-divergence (𝐴𝐾𝐿) is computed over a sliding window [𝑥𝑡−𝑀+1,. . . ,𝑥𝑡] of previous𝑀 images in
the time series.𝐴𝐾𝐿 is used to compute the CUSUM value 𝑆𝑡 , which is compared against a threshold
𝜏𝑐𝑝 to detect changes.

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 15

Algorithm 4 𝛽-VAE based OOD detection using ICP
Parameter: sliding window length𝑀 , non-conformity measures of calibration set C.
Input: image 𝑥𝑡 at time 𝑡 , set of detector latent variables L𝑑 .
Output: martingale score logM𝑡 at time 𝑡
1: 𝛼𝑡 =

∑
∀𝑙∈L𝑑 |𝐷𝐾𝐿 (𝑞 (𝑧𝑙 |𝑥𝑡) | |N (0, 1)) |

2: 𝑝𝑡 = (|{∀𝛼∈C|𝛼≥𝛼𝑡 }|)
(|C|)

3: 𝑀𝑡 =
∫ 1
0

[∏𝑡
𝑖=𝑡−𝑀+1 𝜖𝑝

𝜖−1
𝑖

]
𝑑𝜖

4: return logM𝑡

Finally, the outputs of the detector (See Fig. 6) are sent to the decision manager, which can use
these detection results to perform system risk estimation [26] or high level controller selection
using simplex strategies [64]. In this work, we use a simple decision logic that uses the OOD
detection result to perform a control arbitration from the DNN controller to an autopilot controller.

5 EXPERIMENTS AND RESULTS
We evaluate our approach using an AV example in the CARLA simulator [14] and show the
preliminary results from the real-world nuImages dataset [52]. The experiments2 in this section
were performed on a desktop with AMD Ryzen Threadripper 16-Core Processor, 4 NVIDIA Titan
Xp GPU’s and 128 GiB memory.

CARLA
Env

Autopilot
controller

NVIDIA
DAVE-II

DNN

Detector

Decision
Manager

Steer

Steer

SteerImageCARLA
Env Vehicle

Throttle

-VAE

Im
ag

e

OOD detection results

Fig. 7. AV block diagram: The components in green come inbuilt with the CARLA simulator, while the
components in blue are designed for our example. While the simulator requires a GPU, the other components
are run on one CPU core to emulate a resource constrained setting.

5.1 System Overview
Our first example system is an AV which must navigate different road segments in town1 of the
CARLA simulator. The architecture of our AV, shown in Fig. 7, relies on a forward-looking camera
for perception and a speedometer for measuring the system’s speed. It uses the NVIDIA DAVE-II
DNN [6] as the primary controller and the simulator’s inbuilt autopilot mode as the secondary
safety controller. In addition, a trained 𝛽-VAE detector and reasoner are used in parallel to the two
controllers. The detection results and the steering values from the two controllers are sent to a
simplex decision manager, which selects the appropriate steering value for the system based on
the detection result. That is, if the detector returns the image to be OOD, the decision manager
selects the autopilot controller to drive the AV. The sampling period used in the simulation is 1/13
seconds, and the vehicle moves at a constant speed of 0.5 m/s for all our experiments.

5.1.1 Operating modes. Our AV has two operating modes: (a) manual driving mode, which uses
CARLA’s autopilot controller to drive around town1. The autopilot controller is not an AI com-
ponent, but it uses hard-coded information from the simulator for safe navigation. We use this
2 source code to replicate these experiments can be found at https://github.com/scope-lab-vu/Beta-VAE-OOD-Detector

https://github.com/scope-lab-vu/Beta-VAE-OOD-Detector

16 S. Ramakrishna et al.

mode to collect the training set T and the test set (T𝑡). These datasets are a collection of several
CARLA scenes generated by a custom Scenario Description Language (SDL) shown in Fig. 8; and
(b) autonomous mode, which uses a trained NVIDIA DAVE-II DNN controller to drive the AV. In
this setup, the 𝛽-VAE detector is used in parallel to the DNN controller to perform OOD detection.

1:16 S. Ramakrishna et al.

a trained 𝛽-VAE detector and reasoner are used in parallel to the two controllers. The detection

results and the steering values from the two controllers are sent to a simplex decision manager,

which selects the appropriate steering value for the system based on the detection result. That is, if

the detector returns the image to be OOD, the decision manager selects the autopilot controller to

drive the AV. The sampling period used in the simulation is 1/13 seconds, and the vehicle moves

with a constant speed of 0.5 m/s for all our experiments.

scene CARLA {
type int
type distribution
entity weather_parameters{

sun_angle: int
cloudiness: distribution
precipitation: distribution }

entity other_parameters{
road_segment:int
brightness: distribution }
}

Feature
Training
Range Nom HP HB HPB NR

Sun Angle 90 90 90 90 90 90

Cloudiness [0,50] 25 50 50 25 50

40 0 50 0Precipitation [0,50] 0

60 0 75 0

0 25 40 0Brightness [0,50] 0

0 60 60 0

Road 1,2,3 3 2 2 2 7

Fig. 8. Data Generation: (left) A fragment of our Scenario Description Language (SDL) written in textX
language. (right) CARLA scenes: Nom is a nominal scene generated by randomly sampling the features
in their training ranges. High Precipitation (HP), High Brightness (HB), High precipitation & brightness
(HPB) scene, and New Road (NR) are 4 test scenes for which the values of the features are changed from a
training range value to a value outside the range at t=20s. The initial values of precipitation and brightness
are highlighted in green.

5.1.1 Operating modes. Our AV system has two operating modes: First, is the manual driving

mode that uses CARLA’s autopilot controller to drive around town1. The autopilot controller is

not an AI component, but it uses hard-coded information from the simulator for safe navigation.

We use this mode to collect the training set T , and the test set (T𝑡). These datasets are a collection
of several CARLA scenes generated by a custom SDL shown in Fig. 9. Second, is the autonomous

mode in which a trained NVIDIA DAVE-II DNN is used as the controller network to drive the AV. In

this setup, the 𝛽-VAE detector is used in parallel to the controller DNN to perform OOD detection.

5.1.2 Data Generation. Domain-specific SDLs such as Scenic [20] and MSDL [19] are available for

probabilistic scene generation. However, they did not fit our need of generating partition variations.

Hence, we have implemented a simple SDL in the textX [11] meta language (See Fig. 9), which

is combined with a random sampler over the range of the simulator’s features like sun altitude,

cloudiness, precipitation, brightness, and road segments to generate different scenes.

Train Scenes: The training feature labels and their values are shown in Fig. 9. These features

were randomly sampled in the ranges shown in Fig. 9 to generate eight scenes of 750 images each

that constituted the training set T . Among these, two scenes had precipitation of 0%, the brightness

of 0%, sun angle 90°, cloudiness of 25%, and road segment of 1 and 2 for each scene respectively.

Three scenes had different precipitation values (precip=5%, precip=40%, precip=50%) while sun

angle took a value of 90°, cloudiness took a value of 25, brightness took a value of 0, and 10, and

the road segments took a value of 1 and 2. The remaining three scenes had different brightness

values (bright=9%, bright=25%, bright=40%), precipitation took a value of 0 and 5, and all the other

parameters remained the same as the other scenes. We split 6000 images of T into 4000 images of

T𝑃 and 2000 images of C in the standard 2:1 ratio (refer to page 222 of [27]) for ICP calculations.

Test Scenes: The test scenes included a nominal scene (Nom) and four OOD scenes as shown in

Fig. 9. Each scene was 20 seconds long, and it had 260 images. (1) Nominal Scene (Nom) was an

in-distribution scene generated from the training distribution. (2) High Precipitation (HP) scene

was an OOD scene in which the precipitation was increased from 40 (in training range) to 60

ACM Transactions on Cyber-Physical Systems, in press. Accepted for publication on August 10th, 2021.

Fig. 8. Data Generation: (left) A fragment of our Scenario Description Language. (right) Scenes in CARLA
simulation: Nominal scene (𝑁𝑜𝑚) is generated by randomly sampling the features in their training ranges.
High Precipitation (𝐻𝑃), High Brightness (𝐻𝐵), High Precipitation & Brightness (𝐻𝑃𝐵) scene, and New Road
(𝑁𝑅) are test scenes for which the feature values change from a training range value to a value outside the
range at 𝑡 = 20 seconds. The initial values of precipitation and brightness are highlighted in green.

5.1.2 Data Generation. Domain-specific SDLs such as Scenic [20] and MSDL [19] are available for
probabilistic scene generation. However, they did not fit our need to generate partition variations.
Hence, we have implemented a simple SDL in the textX [11] meta language (See Fig. 8), which
is combined with a random sampler over the range of the simulator’s features like sun altitude,
cloudiness, precipitation, brightness, and road segments to generate different scenes.

Train Scenes: The training feature labels, and their values are shown in Fig. 8. These features
were randomly sampled in the ranges shown in Fig. 8 to generate eight scenes of 750 images each
that constituted the training set T . Among these, two scenes had precipitation of 0%, the brightness
of 0%, sun angle 90°, cloudiness of 25%, and road segment of 1 and 2 for each scene, respectively.
Three scenes had different precipitation values (precip=5%, precip=40%, precip=50%) while sun
angle took a value of 90°, cloudiness took a value of 25%, brightness took a value of 0%, and 10%,
and the road segments took a value of 1 and 2. The remaining three scenes had different brightness
values (bright=9%, bright=25%, bright=40%), precipitation took a value of 0% and 5%, and all the
other parameters remained the same as the other scenes. We split 6000 images of T into 4000
images of T𝑃 and 2000 images of C in the standard 2:1 ratio (page 222 of [27]) for ICP calculations.

Test Scenes: The test scenes included a nominal scene (𝑁𝑜𝑚) and four OOD scenes as shown in
Fig. 8. Each scene was 20 seconds long, and it had 260 images. (1) Nominal Scene (𝑁𝑜𝑚) was an
in-distribution scene generated from the training distribution. (2) High Precipitation (𝐻𝑃) scene
was an OOD scene in which the precipitation was increased from 40% (in training range) to 60%
(out of training range) at 𝑡 = 2 seconds. (3) High Brightness (𝐻𝐵) scene was an OOD scene in which
the brightness was increased from 25% (in training range) to 60% (out of training range) at 𝑡 = 2
seconds. (4) High Precipitation & Brightness (𝐻𝑃𝐵) scene was also an OOD scene in which both
the precipitation and the brightness were increased out of the training range at 𝑡 = 2 seconds. (5)
New Road (𝑁𝑅) scene was an OOD scene with a new road segment (segment=7) that was not in the
training range, but the other features remained within the training range. Fig. 9 shows the variance
in the normalized values of the scene features for the training set, partitions, and test scenes.

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 1720 S. Ramakrishna et al.

0 25 50 75 100

P

B

S

C

R

feature value

Training Set

0 25 50 75 100

feature value

Precipitation Partition

0 25 50 75 100

feature value

Brightness Partition

0 25 50 75 100

P

B

S

C

R

feature value

Nominal (Nom)

0 25 50 75 100

P

B

S

C

R

feature value

High Precipitation (HP)

0 25 50 75 100

feature value

High Bright (HB)

0 25 50 75 100

feature value

High Precip & Bright (HPB)

0 25 50 75 100

feature value

New Road (NR)

Precipitation Brightness Sun Angle Cloudiness Road Segment

detector martingale instantly increases above the threshold, and the scene was identified as an

OOD. However, the martingales of the reasoners for precipitation and brightness only show slight

variations without increasing beyond the selected threshold. The scene is identified to be an OOD,

but the precipitation and brightness features are identified not to be the cause of the OOD.

Further, Fig. 12 shows the plots of the capability of the detector in identifying changes in the

current test input as compared to the previous sequence of inputs (problem2). For these evaluations,
we used the Nom, HB, and extended HB test scenes of length 50 seconds. In the extended HB scene,

the brightness increases only for a short period between 17.5 seconds and 29 seconds. For these

scenes, the moving average calculations performed were on a sliding window of 𝑀=20, and the

CUSUM parameters were 𝜔=0.75 and 𝜏=1.2. The detector could identify change points with a short

latency of 11 frames which refers to ∼ 1 second for the AV.

0 10 20 30 40

0

2

4

6

8

Time (s)

A
v
g
.
K
L

D
i
v
e
r
g
e
n
c
e

0 10 20 30 40

0

2

4

6

8

Time (s)

A
v
g
.
K
L

D
i
v
e
r
g
e
n
c
e

CUSUM Threshold Change Point

0 10 20 30 40

0

2

4

6

8

Time (s)

A
v
g
.
K
L

D
i
v
e
r
g
e
n
c
e

Fig. 12. Runtime Change Detection: Moving Average and CUSUM for identifying feature changes in Nom,
HB, and an extended HB test scenes. (Left) Nom scene - there is no change in the scene, so the average
KL-divergence remains below 𝜏 . (Center) HB scene - the brightness of the scene changes at 17.5 seconds and
this was identified by the detector. (Right) Extended HB scene - high brightness is introduced for a short
period between 17.5 seconds to 29 seconds, and the detector was able to identify both the changes.

6.3.3 Evaluating the Design Approach. Table 3 illustrates how the proposed heuristics in each step

of our approach (Section 4) results in best detector properties (text highlighted in green). The

properties of interest are robustness, minimum sensitivity, and resource efficiency, are defined in

Section 2. We evaluate robustness on Nom, HPB, and NR scenes, minimum sensitivity on HP and

HB, and resource efficiency measured across all the scenes. For these evaluations, we have compared

the proposed heuristics to an alternate technique for each step. The comparisons are as follows

(proposed techniques are underlined): (1) MIG vs. Evidence Lower Bound (ELBO) loss function

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article . Publication date: April 2021.

Whole Dataset

Test Scenes

Fig. 9. Feature Value Variance: Plots representing the normalized values of sun angle (S), cloudiness (C),
precipitation (P), brightness (B), and road segments (R) for the training set, partitions, and the test scenes. We
use the test scene abbreviations 𝑁𝑜𝑚 (Nominal), 𝐻𝑃 (High Precipitation), 𝐻𝐵 (High Brightness), 𝐻𝑃𝐵 (High
Precipitation & Brightness), and 𝑁𝑅 (New Road segment) for the rest of the paper. The 𝑁𝑅 scene has all the
feature values like the 𝑁𝑜𝑚 scene, but it uses the road segment 7 that is not in the training distribution.

Algorithm # of Iterations
Iterations to

reach optimum
Search Time

(min) max MIG Selected Parameter

Grid 360 5 10924.55 0.0017 30,1.4
Random 50 40 1199.51 0.00032 40,1.5

BO 50 16 837.05 0.0018 30,1.4
Table 1. Comparing Hyperparameter search algorithms: Bayesian Optimization algorithm is compared
against random and grid search algorithms.

5.2 𝛽-VAE Detector
We implement the steps of our approach discussed in Section 4 to design a 𝛽-VAE detector for our
AV example.

5.2.1 Data Partitioning. Using our partitioning technique discussed in Section 4.1, we select
three scenes with variance in precipitation values (precip=5%, precip=40%, precip=50%) as the
precipitation partition 𝑃1, and the remaining three scenes with variance in brightness values
(bright=9%, bright=25%, bright=40%) as the brightness partition 𝑃2.

5.2.2 Latent Space Encoding. We applied the BO algorithm based heuristic discussed in Section 4.2
to select and train the 𝛽-VAE with appropriate hyperparameters.

Network Structure and Training: We designed a 𝛽-VAE network that has four convolutional
layers 32/64/128/256 with 5𝑥5 filters and 2𝑥2 max pooling followed by four fully connected layers
with 2048, 1000, 250 and 50 neurons. A symmetric deconvolutional decoder structure is used
as a decoder. This network along with images in T was used in the BO algorithm discussed in
Algorithm 2. For each iteration of the BO algorithm, the network was trained for 100 epochs using
the Adam gradient-descent optimizer and a two-learning scheduler, that had an initial learning
rate 𝜂 = 1 x 10−5 for 75 epochs, and subsequently fine-tuning 𝜂 = 1 x 10−6 for 25 epochs. Learning
rate scheduler is used to improve the model’s accuracy and explore areas of lower loss. In addition,
we had an early stopping mechanism to prevent the model from overfitting.

18 S. Ramakrishna et al.

In addition to network training, the algorithm also involved computing the MIG in every iteration.
For computing it, we utilized the images and labels from partitions 𝑃1 and 𝑃2, which were generated
in the previous step. To obtain robust MIG, we computed the latent variable entropy by randomly
sampling 500 samples from each latent variable in the latent space. To back this, we also averaged
the MIG across five iterations.

Performance Comparison: We compared the performance of BO, grid, and random search
algorithms. The results of these algorithms are shown in Table 1. Random search and BO algorithm
was run for 50 trials, while the grid search was run for 360 trials across all combinations of n ∈
[30, 200] and 𝛽 ∈ [1, 5]. In comparison, the BO algorithm achieved the highest MIG value of 0.0018
for 𝛽 = 1.4 and 𝑛 = 30 hyperparameters. It also took the shortest time of 837.05 minutes (early
termination because optimal hyperparameters(s) were found) as compared to the other algorithms.

Partition Latent Variable set L𝑃
P1 𝐿2(0.09) 𝐿25(0.06) 𝐿0(0.05) 𝐿29(0.02)
P2 𝐿25(0.16) 𝐿0(0.09) 𝐿20(0.07) 𝐿2(0.07)

Table 2. Latent Variable Mapping: Ordered List of latent variable set L𝑃 for 𝑃1 and 𝑃2. The latent variable
𝐿2 had highest KL-divergence variance across the scenes in 𝑃1. 𝐿25 had the highest KL-divergence variance
across the scenes in 𝑃2. L𝑑 is chosen as the union of the two L𝑃 sets. Chosen L𝑑 = {𝐿0, 𝐿2, 𝐿20, 𝐿25, 𝐿29}

5.2.3 Latent Variable Mapping. We used the selected and trained 𝛽-VAE along with the data
partitions 𝑃1 and 𝑃2 to find latent variables for OOD detection (L𝑑) and reasoning (L𝑓). For each
scene in the partitions, we applied the steps in Algorithm 3 as follows. First, we used the successive
images in each scene to generate a latent variable set L and then computed a KL-divergence value.
Second, we computed an average KL-divergence difference between corresponding latent variables
of the two images. Third, we computed the average KL-divergence difference (using Eq. (5)) for
each latent variable across all the subsequent images in a scene. We repeated these steps for all the
scenes in both partitions. Finally, for each partition we identified a partition latent variable set L𝑃

using the Welford’s algorithm as discussed in Section 4.3. The number of latent variables𝑚 in L𝑃

requires selection based on the dataset. In this work, the value for𝑚 is chosen by human judgment.
For the CARLA dataset, we chose the value of𝑚 to be 4.

Implementing these steps, we selected the partition latent variable setsL𝑃1 = {𝐿2, 𝐿25, 𝐿20, 𝐿0, 𝐿29}
for 𝑃1 and L𝑃2 = {𝐿25, 𝐿0, 𝐿20, 𝐿2, 𝐿29} for 𝑃2. These latent variables had the highest KL-divergence
variance values and hence were selected. The KL-divergence variance values of these latent variables
are reported in Table 2. Then, the union of these two partition sets were used as the total detector
L𝑑 = {𝐿0, 𝐿2, 𝐿20, 𝐿25, 𝐿29}. Fig. 10 shows the scatter plots of the latent distributions of the selected
latent variables and 5 randomly selected latent variables (𝐿1, 𝐿3, 𝐿5, 𝐿15, 𝐿28) for the train images
(yellow points) and the test images (green points), which are OOD with high brightness. The latent
distributions of the selected latent variables highlighted in the red box form evident clusters between
the train images and the test images, and these clusters have a good intra-cluster separation. But,
for the other latent variables, the distributions are scattered and do not form clean clusters, and
these clusters are not well separated.

Further, we chose one latent variable with the maximum variance in the partition latent variable
sets and, it was used as the reasoner for that partition. We chose 𝐿2 as the reasoner for the
precipitation partition 𝑃1 and 𝐿25 is used as the reasoner for the brightness 𝑃2. Our decision
of choosing only one latent variable for reasoning is backed by the fact that the dataset was
synthetically generated, and the features were not highly correlated. However, real-world datasets
may require more than one latent variable for reasoning.

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 19

µ

L0 L29 L25 L20 L2

L1 L5L3 L23 L28lo
g(
σ
2
)

Fig. 10. Scatter plots of individual latent variables: The latent distributions of the selected latent variables
(highlighted in red) as compared to 5 other latent variables that were not selected. Yellow points represent
the distributions of the train images, and the green points represent the distributions of the test images that
were OOD. The selected latent variables into a well-formed cluster, and there is a higher separation between
the train and the test image clusters. The un-selected latent variables do not form clean clusters. Using the
5 most informative latent variables for detection resulted in better robustness and minimum sensitivity as
compared to using all the latent variables as shown in Table 3. Plot axis: x-axis represents the mean of the
latent distributions in the range [−5, 5], and the y-axis represents the log of variance in the range [−5, 5].

5.3 Out-of-Distribution Detection Results from CARLA Simulation
5.3.1 Evaluation Metrics. (1) Precision (P) is a fraction of the detector identified anomalies that are
real anomalies. It is defined in terms of true positives (TP), false positives (FP), and false negatives
(FN) as 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑁). (2) Recall (R) is a fraction of all real anomalies that were identified by the
detector. It is calculated as 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑃). The FP and FN for the test scenes is shown in Table 4.
(3) F1-score is a measure of the detector’s accuracy that is computed as 2 × (𝑃 × 𝑅) ÷ (𝑃 + 𝑅). (4)
Execution Time is computed as the time the detector receives an image to the time it computes
the log of martingale. (5) Average latency is the number of frames between the detection and the
occurrence of the anomaly. (6) Memory Usage is the memory utilized by the detector.

5.3.2 RuntimeOODDetection. We evaluate the performance of the selected 𝛽-VAE network (𝛽 = 1.4
and 𝑛 = 30) for the 5 test scenes described in Fig. 8. Additional hyperparameters that were used by
the detectors and the reasoners are as follows. The martingale sliding window size 𝑀 = 20, the
CUSUM parameters for the detector are 𝜔𝑑 = 14 and 𝜏𝑑 = 100, and for the reasoners are 𝜔𝑟 = 18
and 𝜏𝑟 = 130. These hyperparameters were selected empirically based on the false positive results
from several trial runs. Fig. 11 summarizes the detector’s performance for a short segment of the 5
test scenes. For the 𝐻𝑃 , 𝐻𝐵, 𝐻𝑃𝐵, and 𝑁𝑅 scenes, the scene shifts from in-distribution to OOD at
𝑡 = 2 seconds, and they are used to illustrate the detection and reasoning capability of our approach.

The𝑁𝑜𝑚 scene has all the feature values within the training distribution, and it is used to illustrate
the detector’s ability to identify in-distribution images. As seen in Fig. 11, the martingale of the
detector and both the reasoners remain low throughout. In 𝐻𝑃 and 𝐻𝐵 scenes, the precipitation
and the brightness feature values increase out of the training distribution at 𝑡 = 2 seconds. In the
𝐻𝑃 scene, the martingales of the detector and the reasoner for the precipitation feature increase
above the threshold after 𝑡 = 2 seconds. However, as seen martingale of the reasoner for brightness
does not increase. So, we conclude that the precipitation feature is the reason for the OOD. In the

20 S. Ramakrishna et al.
Efficient Out-of-distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 19

−0.2
0

0.2

S
t
e
e
r
i
n
g

Nom Scene HB Scene HP Scene HPB Scene NR Scene

0

0.5

1

P
-
v
a
l
u
e

(
D
e
t
e
c
t
o
r
)

0

10

20

𝑙𝑜
𝑔
𝑀

(
D
e
t
e
c
t
o
r
)

0

200

400

0

0.5

1

P
-
v
a
l
u
e

(
P
r
e
c
i
p
)

0

10

20

𝑙𝑜
𝑔
𝑀

(
P
r
e
c
i
p
)

0

200

400

0

0.5

1

P
-
v
a
l
u
e

(
B
r
i
g
h
t
)

0 1 2 3 4 5 6

0

10

20

Time (s)

𝑙𝑜
𝑔
𝑀

(
B
r
i
g
h
t
)

0 1 2 3 4 5 6

Time (s)

0 1 2 3 4 5 6

Time (s)

0 1 2 3 4 5 6

Time (s)

0 1 2 3 4 5 6

Time (s)

0

200

400

Fig. 10. Runtime OOD Detection: Performance of the 𝛽-VAE detector for the 5 test scenes generated in
Section 5.1. The solid blue line represents the log of martingale, the solid green lines represent the CUSUM
values and the dotted red lines represent the threshold (𝜏) for CUSUM comparison. Further, the left y-axis
shows the log of martingale with range [-5,20], and the right y-axis shows the CUSUM value with range
[0,400]. The cusum threshold represented in the red dotted lines are plotted to the right y-axis.

increase above the threshold. So, we attribute both the features to be the cause of the OOD. The

peaks in the steering plots at 𝑡 = 2𝑠 are when the DAVE-II DNN steering predictions get erroneous,

and the decision manager arbitrates the control to the autopilot controller.

The New Road scene is of interest for this work, as we illustrate the detector’s capability of

estimating an out-of-set feature responsible for the OOD. The scene has a new road segment that

was not in the training distribution. It also had slightly different background artifacts (e.g. buildings,

traffic lights), but the precipitation and brightness values were within the training distribution. The

detector martingale instantly increases above the threshold, and the scene was identified as an

OOD. However, the martingales of the reasoners for precipitation and brightness only show slight

variations without increasing beyond the selected threshold. The scene is identified to be an OOD,

but the precipitation and brightness features are identified not to be the cause of the OOD. So, we

attribute the cause of the OOD to be an out-of-set feature using the logic illustrated in Fig. 5.

Further, Fig. 11 shows the plots of the capability of the detector in identifying changes in the

current test input as compared to the previous sequence of inputs (problem2). For these evaluations,
we used the Nom, HB, and extended HB test scenes of length 50 seconds. In the extended HB scene,

the brightness increases only for a short period between 17.5 seconds and 29 seconds. For these

scenes, the moving average calculations performed were on a sliding window of 𝑀=20, and the

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article . Publication date: April 2021.

Fig. 11. Runtime OOD Detection: Performance of the 𝛽-VAE detector for the 5 test scenes generated in
Section 5.1. The solid blue line represents the log of martingale, the solid green lines represent the CUSUM
values and the dotted red lines represent the threshold (𝜏) for CUSUM comparison. Further, the left y-axis
shows the log of martingale with range [−5, 20], and the right y-axis shows the CUSUM value with range
[0, 400]. The cusum threshold represented in the red dotted lines are plotted to the right y-axis.

𝐻𝐵 scene, the martingales of the detector and the reasoner for the brightness feature increase above
the threshold after 𝑡 = 2 seconds. Also, the martingale of the reasoner for precipitation shows a
slight variation but does not increase above the threshold. So, we conclude the brightness feature
is the cause of the OOD. In the 𝐻𝑃𝐵 scene, the precipitation and brightness feature increase to a
value out of the training distribution at 𝑡 = 2 seconds. The martingale of the detector and both
the feature reasoners increase above the threshold. So, we attribute both the features to be the
cause of the OOD. The peaks in the steering plots at 𝑡 = 2 seconds are when the DAVE-II DNN
steering predictions get erroneous, and the decision manager arbitrates the control to the autopilot
controller.
The 𝑁𝑅 scene is of interest for this work, as the scene has a new road segment with different

background artifacts (e.g., buildings, traffic lights) that were not in the training distribution. But
the precipitation and brightness feature values were within the training distribution. When tested
on this scene, the detector martingale instantly increases above the threshold, identifying the scene
to be OOD. However, the martingales of the reasoners for precipitation and brightness only show
slight variations without increasing beyond the threshold. The result implies that the scene is OOD,
but a feature other than brightness and precipitation has varied and is responsible for the OOD.

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 21

0 10 20 30 40
0
2
4
6
8

Time (s)

Av
g.
KL

D
iv
er
ge
nc
e

0 10 20 30 40
0
2
4
6
8

Time (s)

Av
g.
KL

D
iv
er
ge
nc
e

CUSUM Threshold Change Point

0 10 20 30 40
0
2
4
6
8

Time (s)

Av
g.
KL

D
iv
er
ge
nc
e

Fig. 12. Runtime Change Detection: Moving Average and CUSUM for identifying feature changes in 𝑁𝑜𝑚,
𝐻𝐵, and an extended 𝐻𝐵 test scenes. (Left) 𝑁𝑜𝑚 scene - there is no change in the scene, so the average
KL-divergence remains below 𝜏 . (Center) 𝐻𝐵 scene - the brightness of the scene changes at 17.5 seconds and
this was identified by the detector. (Right) Extended 𝐻𝐵 scene - high brightness is introduced for a short
period between 9.5 seconds to 29.5 seconds, and the detector was able to identify both the changes.

Further, Fig. 12 shows the plots of the capability of the 𝛽-VAE detector in identifying changes in
the current test image as compared to the previous images in the time series (problem2). For these
evaluations, we used the 𝑁𝑜𝑚, 𝐻𝐵, and extended 𝐻𝐵 test scenes, which had a length of 50 seconds
each. The 𝑁𝑜𝑚 and 𝐻𝐵 scenes are same as the previous setup, but in the extended 𝐻𝐵 scene, the
brightness feature value abruptly increases only for a brief period between 9.5 seconds and 29.5
seconds. For these test scenes, we performed the moving average calculation on a sliding window
of 𝑀 = 20 with the CUSUM parameters of 𝜔𝑐𝑝 = 0.75 and 𝜏𝑐𝑝 = 1.2. With these parameters, our
detector could identify change points with a short latency of 11 frames, which translates to one
second of inference time for the AV system.

5.3.3 Evaluating the Design Approach. Table 3 illustrates how the proposed heuristics in each step
of our approach (Section 4) results in achieving the best detector properties (text highlighted in
green). The properties of interest are robustness, minimum sensitivity, and resource efficiency,
which are defined in Section 2. We evaluate robustness on the in-distribution scene 𝑁𝑜𝑚, and two
OOD scenes 𝐻𝑃𝐵 and 𝑁𝑅. The 𝐻𝑃 and 𝐻𝐵 scenes had variations in either the precipitation value
or the brightness value, but they did not have simultaneous variations in both. So, it was suitable
to use them to measure the detector’s minimum sensitivity towards these features. However, in
the 𝐻𝑃𝐵 scene, both these features varied simultaneously, so it was not suitable for measuring
the minimum sensitivity. The resource efficiency was measured across all the scenes. For these
evaluations, we have compared the proposed heuristics to an alternate technique in each step. The
comparisons are as follows (proposed techniques are underlined): (1) MIG vs. ELBO loss function
(discussed in Section 3), (2) Bayesian Optimization vs. Grid and Random Search, and (3) Selective
vs. All latent variables for detection. Our evaluations are as follows.

If the dataset can be partitioned, either MIG or ELBO can be used as the objective function with
the BO, grid, or random search algorithms. Since the dataset can be partitioned, the latent variable
heuristic could be applied to select a subset of latent variables, which can be used for detection. As
illustrated in Table 3, the optimization algorithm and objective function combinations resulted in 5
different 𝛽-VAE networks and 5 latent variables for L𝑑 . Among these, the BO and grid algorithms
using MIG resulted in the best detector that had robustness of 96.98%, minimum sensitivity of 96%,
and a detection time of 74.09 milliseconds. In comparison, the other detectors had low robustness
and minimum sensitivity, and a similar detection time.

However, if the dataset cannot be partitioned, then ELBO is the only objective function that can
be used with the BO, grid, or random search algorithms. However, without partitioning, the latent
variable mapping heuristic cannot be applied. So, all the latent variables for the chosen 𝛽-VAE had

22 S. Ramakrishna et al.

Design-time steps of our approach Detector Properties
Latent Space Encoding

Partitioning Objective
Function

Optimization
Algorithm

Selected L𝑑
for Detection

Robustness
F1-score (%)

Minimum
Sensitivity (%)

Execution
Time (ms)

BO (30,1.4) [0,2,20,25,29] 96.98 96 74.09
Grid (30,1.4) [0,2,20,25,29] 96.98 96 74.09MIG

Random (40,1.5) [0,17,6,8,7] 80.75 35 79.15
BO (30,1.0) [0,1,6,21,23] 95.83 63 75.39
Grid (40,1.0) [13,28,26,23,0] 84.65 54 78.85

Yes

ELBO
Random (30,1.2) [10,14,21,22,26] 94.9 71 74.98

BO (30,1.0) All 30 85.89 73 379.47
Grid (40,1.0) All 40 68.96 42 488.85No ELBO

Random (30,1.2) All 30 89.73 53 396.89
Table 3. Design Approach Evaluation: Evaluations of how the heuristics of our design approach influence
the detector properties discussed in Section 2. We evaluated Robustness on the 𝑁𝑜𝑚, 𝐻𝑃𝐵, and 𝑁𝑅 scenes.
Minimum sensitivity was evaluated on the 𝐻𝑃 and 𝐻𝐵 scenes. Resource efficiency was measured across all
the test scenes. The numbers in the optimization algorithm column indicate the selected hyperparameters.
Text in green highlights the best detector properties achieved by our approach. Text in red highlights a high
detection time.

to be used for detection. Using all the latent variables for detection resulted in a less robust and
sensitive detector that took an average of 400 milliseconds (text in red) as shown in Table 3.

5.4 Detection Results from Competing Baselines
We compare the performance of the 𝛽-VAE detector to other state-of-the-art approaches using our
AV example in CARLA. The approaches that we compare against are: (1) Deep-SVDD one-class
classifier; (2) VAE based reconstruction classifier; (3) chain of one-class Deep-SVDD classifiers;
and (4) chain of VAE based reconstruction classifiers. The VAE network architecture is the same
as that of 𝛽-VAE (described in Section 5) but uses the hyperparameters of 𝛽 = 1 and 𝑛 = 1024.
The one-class Deep-SVDD network has four convolutional layers of 32/64/128/256 with 5𝑥5 filters
with LeakyReLu activation functions and 2𝑥2 max-pooling, and one fully connected layer with
1568 units. These networks are also trained using a two-learning scheduler, with 100 epochs at a
learning rate 𝜂 = 1 x 10−4, and 50 epochs at a learning rate 𝜂 = 1 x 10−5. Further, we combined two
of these classifiers to form a chain of Deep-SVDD classifiers and a chain of VAE classifiers. In each
chain, one classifier is trained to classify images with variations in the values of the brightness
feature, and the other is trained to classify images with variations in the values of the precipitation
feature. These classifiers are combined using an OR operator.

For these evaluations, we set resource limits on the python software component (See Fig. 7) for
evaluating the processing time and memory usage. We assigned a soft limit of one CPU core and a
hard limit of four CPU cores on each of the components to mimic the settings of an NVIDIA Jetson
TX2 board. Further, to measure the memory usage, we used the psutil [61] cross-platform library.

5.4.1 Comparing Runtime OOD Detection. The false positive and false negative definitions for the
𝐻𝑃 , 𝐻𝐵, 𝐻𝑃𝐵, and 𝑁𝑅 test scenes are defined in Table 4. Based on these definitions, the precision
and recall of the different detectors for the test scenes are shown in Fig. 13. In 𝐻𝑃 and 𝐻𝐵 scenes, a
single feature (precipitation or brightness) value was varied, and the classifier that was not trained
on the representative feature of that scene had low true positives. So, the precision and recall
of these detectors are mostly zero. In the 𝐻𝑃𝐵 scene shown in Fig. 13-c, both the features were
varied, so a single one-class classifier was not sufficient to identify both the feature variations.
However, the one-class classifier chains with an OR logic had higher precision in detecting the

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 23

feature variations in all these scenes. Similarly, the detection and OOD reasoning capability of the
𝛽-VAE detector could identify both the feature variations.

For the 𝑁𝑅 scene shown in Fig. 13-d, which had a new road segment with the precipitation and
brightness values within the training distribution, both the one-class classifiers and their chains
raise a false alarm. So, their precision towards detecting variations in these features is low (roughly
1%). In contrast, the 𝛽-VAE detector alongside the reasoner was able to identify that the OOD
behavior was not because of the precipitation and brightness with a precision of 46%. These results
imply that the 𝛽-VAE detector can precisely identify if the features of interest are responsible for
the OOD. Whereas a similar reasoning inference cannot be achieved using the other approaches.

Scene FP FN

𝐻𝑃
The image is not OOD due to high precipitation,
but it is identified as OOD.

The image is OOD due to high rain, but is
identified as in-distribution

𝐻𝐵
The image is not OOD due to high
brightness, but is identified as OOD.

The image is OOD due to high brightness,
but is identified as in-distribution.

𝐻𝑃𝐵
The image is not OOD due to high precipitation
and high brightness but, is identified as OOD.

The image is OOD due to high rain and high
brightness, but is identified as in-distribution.

𝑁𝑅
The image is not OOD due to change in road
segment, but is identified as OOD.

The image is OOD due to change in road
segment, but is identified as in-distribution.

Table 4. Metrics: Definitions of false positives and false negatives for the 𝐻𝑃 , 𝐻𝐵, 𝐻𝑃𝐵, and 𝑁𝑅 test scenes.

SD1 SD2 SDC VD1 VD2 VDC BD

0
50
100

P
&
R
(%
)

SD1 SD2 SDC VD1 VD2 VDC BD

0
50
100

P
&
R
(%
)

SD1 SD2 SDC VD1 VD2 VDC BD

0
50
100

P
&
R
(%
)

SD1 SD2 SDC VD1 VD2 VDC BD

0
50
100

P
&
R
(%
)

P R
Fig. 13. Precision and Recall: Evaluations on different scenes: (a) 𝐻𝑃 - top left, (b) 𝐻𝐵 - bottom left, (c) 𝐻𝑃𝐵
- top right and (d) 𝑁𝑅 - bottom right. The detectors compared are: 𝑆𝐷1 - Deep-SVDD Precipitation detector,
𝑆𝐷2 - Deep-SVDD brightness detector, 𝑆𝐷𝐶 - Deep-SVDD detector chain, 𝑉𝐷1 - VAE Precipitation detector,
VD2 - VAE brightness detector, VDC - VAE detector chain, BD - 𝛽-VAE detector. These values were collected
by running the detectors on each scene for 20 times.

5.4.2 Comparing Execution Time and Latency. To emulate a resource constrained setting, we
performed the evaluation for execution time and latency on one CPU core.

Execution Time: As discussed earlier, we selected 5 latent variables for detection and one
latent variable each for reasoning about the precipitation and brightness features. Two components
that mainly contribute to the execution time of the 𝛽-VAE detector are: (1) the time taken by the
𝛽-VAE’s encoder to generate the latent variables, and (2) the time taken by ICP and martingale
for runtime detection. The average execution time using all 30 latent variables of the 𝛽-VAE was
400 milliseconds, and this was drastically reduced to 74.09 milliseconds when the 5 selected latent
variables were used. Also, the reasoner only took about 9 milliseconds as it worked in parallel to
the detector.

In comparison, the Deep-SVDD classifiers took an average of 41 milliseconds for detection, and
its chain took an average of 43.36 milliseconds, as shown in Fig. 14. Also, each of the VAE based

24 S. Ramakrishna et al.

reconstruction classifiers took an average of 53 milliseconds for detection, and its chain took an
average of 57 milliseconds. The Deep-SVDD and VAE based reconstruction classifiers performed
slightly faster than our detector.

S2 S3 S4 S5
40
50
60
70

Ex
ec
ut
io
n

Ti
m
e
(m

s)

S2 S3 S4 S5

5
10
15

Av
g.

La
te
nc
y

(F
ra
m
es
)

SD1 SD2 SDC VD1 VD2 VDC B-VAE

Fig. 14. Timing Analysis:(Left) Execution Time in milliseconds and (Right) Detection latency in number of
frames, of the different detectors for the 𝐻𝑃 , 𝐻𝐵, 𝐻𝑃𝐵 and 𝑁𝑅 scenes. The detectors are 𝑆𝐷1 - Deep-SVDD
Precipitation detector, 𝑆𝐷2 - Deep-SVDD brightness detector, 𝑆𝐷𝐶 - Deep-SVDD detector chain, 𝑉𝐷1 - VAE
Precipitation detector, 𝑉𝐷2 - VAE brightness detector, 𝑉𝐷𝐶 - VAE detector chain, 𝐵𝐷 - 𝛽-VAE detector. These
values were collected by running the detectors on each scene for 20 times.

Detection Latency: The detection latency in our context is the number of frames between the
detection and the occurrence of the OOD. In our approach, the latency is dependent on the size of
the martingale window, which is dependent on the CPS dynamics and the sampling period of the
system as discussed in Section 3.4. In addition, the selection of the CUSUM threshold also impacts
the latency. In these experiments, our AV traveled at a constant speed of 0.5 m/s, so we used a fixed
window size of 20 images. Further, we empirically selected the CUSUM threshold to be 100. With
this configuration, the 𝛽-VAE detector had an average latency of 12.6 frames, and the reasoners had
an average latency of about 11.5 frames across the 4 test scenes. In comparison, the Deep-SVDD
classifiers and their chain had an average latency of 11 frames and 11.21 frames, respectively. Also,
each of the VAE based reconstruction classifiers and their chain had an average latency of 13 frames
and 12.9 frames, respectively.

To summarize, all the approaches had similar detection latency, with the Deep-SVDD classifier
performing slightly better. The Deep-SVDD classifier and its chain had slightly shorter latency as
compared to our detector. However, the 𝛽-VAE detector had a lower latency compared to the VAE
based reconstruction classifier and its chain.

5.4.3 Comparing Memory Usage. Our approach uses a single 𝛽-VAE network to perform both
detection and reasoning. Specifically, we only utilize the network’s encoder instead of both the
encoder and the decoder. The average memory utilization of the 𝛽-VAE detector was 2.49 GB, and
the reasoners were 0.23 GB. In comparison, the Deep-SVDD classifiers and their chain utilized an
average memory of 3.2 GB and 6.4 GB, respectively. Also, the VAE based reconstruction classifiers
and their chain utilized an average memory of 3.6 GB and 7.2 GB, respectively. The classifier chains
utilized higher memory because two DNNss were used for detection.

To summarize, our approach utilizes lesser memory because: (1) it only requires the encoder of a
single 𝛽-VAE network for both detection and reasoning; and (2) it utilizes fewer latent variables for
detection because it relies on the disentanglement concept. For the AV example, our detector only
required 5 latent variables as compared to 1024 latent variables of the VAE reconstruction classifier
and 1568 activation functions in the embedding layer of the Deep-SVDD classifier.

5.5 OOD Detection Results from nuImages dataset
As the second example, we apply our detection approach on a small fragment of the nuImages [52]
dataset. We report the preliminary results of our evaluation in this section.

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 251:26 S. Ramakrishna et al.

0

0.5

1

P
-
v
a
l
u
e

(
D
e
t
e
c
t
o
r
)

Nom Scene PoT Scene

−5
0

5

10

𝑙𝑜
𝑔
𝑀

(
D
e
t
e
c
t
o
r
)

0

10

20

0

0.5

1

P
-
v
a
l
u
e

(
T
r
a
ffi
c
)

−5
0

5

10

𝑙𝑜
𝑔
𝑀

(
T
r
a
ffi
c
)

0

10

20

0

0.5

1

P
-
v
a
l
u
e

(
P
e
d
e
s
t
r
i
a
n
)

0 1 2 3

−5
0

5

10

Time (s)

𝑙𝑜
𝑔
𝑀

(
P
e
d
e
s
t
r
i
a
n
)

0 1 2 3 4 5 6 7

Time (s)

0

10

20

Fig. 16. Runtime OOD Detection on nuImages dataset: Performance of the 𝛽-VAE detector for the Nom
(nominal) and PoT(pedestrian or traffic) scenes of the nuImages experiments. For the martingale plots, the
solid blue line represents the log of martingale, the solid green lines represent the CUSUM values and the
dotted red lines represent the threshold (𝜏) for CUSUM comparison. Further, the left y-axis shows the log of
martingale with range [-5,10], and the right y-axis shows the CUSUM value with range [0,20]. The cusum
threshold represented in the red dotted lines are plotted to the right y-axis.

Dataset Overview: The NuImages dataset is derived from the original nuScenes dataset [7]. The

nuImages dataset has better image annotation labels, reduced label imbalance, and a larger number

of similar scenes (e.g., a scene with the same road segment but different time-of-day, weather, and

pedestrian density values), which makes it suitable for our work. The dataset has 93, 000 images

collected at 2𝐻𝑧, and it has annotations for foreground objects such as vehicles, animals, humans,

static obstacles, moving obstacles, etc. The foreground objects further have additional attributes

about the weather, activity of a vehicle, traffic, number of pedestrians, pose of the pedestrians,

among others. We demonstrate our OOD detection capability on scenes with different values of

traffic and pedestrian density features. For these experiments, we train the detector with different

traffic and pedestrian values, and then use it to detect images in which either traffic or pedestrian

features are absent (OOD condition).

Data Partitioning: The training set T had images from 4 scenes with different traffic and

pedestrians values. We partitioned T into two partitions. 𝑃1 had images with varying pedestrian

values consisting of medium and high in the range [1, 5] and more than 5, respectively. 𝑃2 had

images with varying traffic values consisting of medium and high in the range [1, 5] and more

than 5, respectively. The test scenes for this evaluation were nominal (Nom) and a pedestrian

or traffic (PoT) scene. The Nom scene was in distribution, and it had 30 images in time series

captured on a clear day from a road segment in Singapore city with traffic and pedestrians in the

training distribution range. The 𝑃𝑜𝑇 scene had 70 images in time series captured from a similar

ACM Transactions on Cyber-Physical Systems, in press. Accepted for publication on August 10th, 2021.

Fig. 15. Runtime OOD Detection on nuImages dataset: Performance of the 𝛽-VAE detector for the 𝑁𝑜𝑚
(nominal) and 𝑃𝑜𝑇 (pedestrian or traffic) scenes of the nuImages experiments. For the martingale plots, the
solid blue line represents the log of martingale, the solid green lines represent the CUSUM values and the
dotted red lines represent the threshold (𝜏) for CUSUM comparison. Further, the left y-axis shows the log of
martingale with range [−5, 10], and the right y-axis shows the CUSUM value with range [0, 20]. The cusum
threshold represented in the red dotted lines are plotted to the right y-axis.

Dataset Overview: The nuImages dataset is derived from the original nuScenes dataset [7]. The
nuImages dataset provides image annotation labels, reduced label imbalance, and a larger number
of similar scenes (e.g., a scene with the same road segment but different time-of-day, weather, and
pedestrian density values), which makes it suitable for our work. The dataset has 93, 000 images
collected at 2𝐻𝑧, and it has annotations for foreground objects such as vehicles, animals, humans,
static obstacles, moving obstacles, etc. The foreground objects further have additional attributes
about the weather, activity of a vehicle, traffic, number of pedestrians, pose of the pedestrians,
among others. We demonstrate our OOD detection capability on scenes with different values of
traffic and pedestrian density features. For these experiments, we train the detector with different
traffic and pedestrian values and then used it to detect images in which either traffic or pedestrian
features are absent (OOD condition).

Data Partitioning: The training set T had images from 4 scenes with varying traffic and
pedestrian values. We partitioned T into two partitions. 𝑃1 had images with medium and high
pedestrian density values in the range [1, 5] and more than 5, respectively. 𝑃2 had images with
medium and high traffic values in the range [1, 5] and more than 5, respectively. The test scenes for
this evaluation were nominal (𝑁𝑜𝑚) and a pedestrian or traffic (𝑃𝑜𝑇) scene. The 𝑁𝑜𝑚 scene was in
distribution, and it had 30 images in time series captured on a sunny day from a road segment in
Singapore city with traffic and pedestrians in the training distribution range. The 𝑃𝑜𝑇 scene had 70
images in time series captured from a similar road segment, and it either had traffic or pedestrians,
but not both together. For most images in this scene, the traffic density took a value in the training

26 S. Ramakrishna et al.

range, but the pedestrian value was close to zero. Further, our test scenes were short as it was
difficult to find longer image sequences that belonged to a sunny day and similar road segment.

Detector Design: We applied our approach discussed in Section 4 and we used the same 𝛽-VAE
network structure as discussed in Section 5.2. Using this set up, we selected a 𝛽-VAE network with
hyperparameters 𝑛=30 and 𝛽=1.1, that resulted in the maximum MIG of 0.0006. We then identified
the detector latent variable set L𝑑 to be {𝐿0, 𝐿7, 𝐿9, 𝐿22}. Further, we selected latent variables 𝐿9 and
𝐿22 as the reasoners for the traffic density and pedestrian density partitions, respectively.

OOD Detection: For runtime OOD detection, we used a window size 𝑀=30 for martingale
computation and 𝜔=2 and 𝜏=10 for reasoners and detector CUSUM calculations. The p-value and
martingale plots for detection and reasoning are shown in Fig. 15. The detector Martingale for
𝑁𝑜𝑚 test scene remained low, and all in-distribution images were detected as in-distribution. The
martingale of the traffic density reasoner remained low for most images except for 2 images. We
hypothesize the reason for this could be that the vehicle and background blended well that confused
the reasoner. The martingale of the pedestrian reasoner remained low throughout the scene. For
OOD scene 𝑃𝑜𝑇 , the detector identified 92% (65/70) of the images correctly as OOD. However, the
first 5 images were incorrectly detected to be in-distribution because of the detection latency of
our window-based martingale approach. Also, as the traffic density was mostly zero throughout
the scene, the martingale of traffic density reasoner is mostly flat throughout. But, for pedestrian
reasoner, all the images were identified as OOD except the first 9 images. The false negatives are
primarily because of the complexity of images in a scene and the detection latency. After these
images, the martingale increases, and the CUSUM also increase above its threshold. In summary,
the reasoners worked reasonably well for these scenes but had a slow martingale growth because
of several background attributes like sun glare, trees, and traffic lights.

Challenges: We discuss the several challenges of applying our approach to a real-world dataset.
The first challenge is the existence of time series images. Although the nuImages dataset provides
the notion of a scene, they contain time gaps, especially after partitioning them into train and test
the dataset. Second, the labels provided for the dataset images are coarse grain. For example, in
nuImages dataset, the semantic label annotations are only limited to high-level foreground objects
like pedestrian and cars, and extracting these labels requires significant pre-processing. Another
challenge is the complexity of images in real-world datasets. The presence of excess background
information such as trees, traffic signals, shadow, reflections, among others, makes the real-world
images complex, and it also impacts the information in the latent space. The other challenge is the
absence of scenes in which the feature(s) gradually change their values. This makes it difficult to
apply our latent variable mapping. Further, finding similar scenes with variations in the specific
feature(s) of interest is difficult. For our experiments, we had to perform significant pre-processing
to extract short image sequences to perform OOD detection and reasoning.

5.6 Discussion
With DNNs being widely used in perception pipelines of automotive CPS, there has been an
increased need for OOD detectors that can identify if the operational test image to the DNN is in
conformance to the training set. Addressing this problem is challenging because these images have
multiple feature labels, and a change in the value of one or more features can cause the image to
be OOD. This problem is commonly solved using a multi-chained one-class classifier with each
classifier trained on one feature label. However, as shown by our evaluation in Section 5.4, the chain
gets computationally expensive with an increased number of image features. So, we have proposed
a single 𝛽-VAE detector that is sensitive to variations in multiple features and is computationally
inexpensive in comparison to the classifier chains. For example, to perform detection on a real-world
automotive dataset like nuScenes with 38 semantic labels, a multi-chained VAE based reconstruction

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 27

classifier (discussed in our experiments) would require training 38 different VAE DNNs as compared
to a single 𝛽-VAE detector that is presented in this work. A memory projection based on the results
in Section 5.4.3 is shown in Fig. 16. It shows that the multi-chain classifier will need a memory of
136.8 GB. In comparison, our approach requires a single network with one or a few latent variables
for detection on each label, and this requires only 10.96 GB of memory.

0 10 20 30 40
0
50
100
150

Number of Labels

M
em

or
y

Us
ag
e
(G
B) VAE-Reconstruction

detector chain
𝛽-VAE detector

Fig. 16. Memory Overhead: Predicted memory usage of a VAE based reconstruction chain and a single
𝛽-VAE detector for the nuScenes images. If a VAE reconstruction detector is used for each of the 38 nuScenes
labels, then the memory usage would linearly grow to 136.8 GB. However, a 𝛽-VAE detector based on our
approach would only require 10.96 GB. These values were computed based on results in Section 5.4.3.

Another related problem motivated in this work is the OOD reasoning capability to identify
the most responsible feature(s). The reasoning capability is desirable for the system to decide
on the mitigation action it must perform. For example, if the detector can identify a high traffic
feature to be the cause of the OOD, then the system can switch to an alternate controller with
lower autonomy. This reasoning capability cannot be achieved using the state-of-the-art chain of
one-class classifiers. But the 𝛽-VAE detector designed and trained using our approach is sensitive
to variations in multiple features. We have evaluated this capability of the 𝛽-VAE detector by
applying it to several OOD scenes in CARLA simulation (see Fig. 11). Especially the 𝑁𝑅 scene
that had a new road segment and background artifacts that are not in the training set. In this
scene, the multi-chained network identified the scene to be OOD because of the precipitation and
brightness features. In comparison, our detector’s OOD reasoning capability was able to identify
with a precision of 46% that the cause was not precipitation or brightness.

In addition to the reasoning capability, a detector for amulti-labeled dataset should haveminimum
sensitivity (defined in Section 2) towards all the feature labels. Highminimum sensitivity is needed to
detect variations in all the feature labels of the training set images. In our approach, we hypothesize
that using the most informative latent variables can provide good minimum sensitivity for the
detector towards each feature label. We back this by our results in Table 3, which illustrates that
a detector that used the 5 most informative latent variables had a high minimum sensitivity to
variations in both the precipitation and brightness features (highlighted in green text in the Table).
In comparison, the detectors that used all the latent variables for detection had lower minimum
sensitivity, as illustrated in the Table.
Besides identifying if the input images are OOD to the training data, it is necessary to check if

they have changed compared to the previous sequence of images in the time series. Such abrupt
changes in the current input will increase the system’s risk of consequence (e.g., collision) [26], so
it is critical to detect them. This problem is necessary to be addressed but has not been given much
importance in the OOD detection literature. In this work, we use the detector’s latent variables in a
moving window based on CUSUM for detecting abrupt changes in the features of the operational
test images. We validated our approach across 3 different scenes (see Fig. 12) for which our detector
could accurately identify feature variations with a short latency of about 11 frames.

Finally, in designing OOD detectors for CPSs, one needs to take into consideration of the system’s
dynamics. But this is often not given importance in the existing detection approaches. Only recently,
Cai et al. [8] have proposed an OOD detection mechanism on time series images that consider

28 S. Ramakrishna et al.

the system dynamics. As discussed in Section 4.4, we rely on their ICP and martingale framework
approach for runtime detection over a short sliding window of images. The sliding window size
needs to be adjusted based on the operational system dynamics like runtime sampling rate and the
speed at which the system is traveling.

6 RELATEDWORK
There has been significant ongoing research to handle the brittleness and susceptibility of DNNs.
We have grouped the existing approaches into different classes and briefly discuss them below.

Domain Adaptation involves transferring knowledge between a labeled source domain and an
unlabeled target domain [53]. The key idea is to learn domain invariant features of the training
data by providing less importance to dataset biases. This is also referred to as transductive transfer
learning and is used when the train and the target tasks remain the same while the domains are
different. Altering the DNN structure has been one of the approaches that have been used for
feature transferability. One such example is the Deep Adaptation Network (DAN) [45] that allows
for feature transferability in the task specific layers of DNNs network while reducing domain
related information. Biasing the training objective to learn the domain invariant feature(s) has been
the other widely adopted approach. For example, Heinze-Deml et al. [28] proposes a conditional
variance penalty-based training loss function to learn domain invariant features. Although domain
adaptation has been widely used, an assumption on the prior distributions of target domains is
restrictive for practical applications like CPSs [73]. Further, negative transfer of knowledge between
the source and target domains has been a common problem [78].

Confidence Estimation involves estimating the confidence in the inputs to a DNN. There have
been several approaches to estimating confidence. The first approach involves adding a confidence
branch at the logits before the softmax layer [13]. The second approach involves using Bayesian
Networks for representing uncertainties in the DNNs [46, 51]. Ensembles of DNNs have been
another approach used for estimating the confidence in the inputs [22, 41]. All these approaches
mostly require making changes to the DNN or will require training model ensembles. Recently, Jha
et al. [33] have proposed the attribution based confidence (ABC) metric that does not require access
to training data or does not need training model ensembles. It is computed by sampling in the
neighborhood of high-dimensional data and then computing a score for its conformance. The
metric looks robust, and it does not require access to the training data at runtime, which is an
advantage compared to our approach. But the impact of input feature correlations and interactions
on the attribution over features require future investigation [67].

Identifying Distribution Shifts involves identifying if the test observation has shifted from
the training distribution. Probabilistic classifiers like GAN and VAE have been widely adopted for
identifying shifts in the test observations [2, 8, 12, 62]. Our work belongs to this class, and different
approaches in this class are discussed in Section 6.1.
In contrast to these approaches, we formulate the problem as a multi-label OOD detection

problem, and in addition to identifying an OOD condition, we also find the feature(s) causing it.

6.1 Probabilistic One-class Classifiers
6.1.1 Adversarial Networks. GANs have emerged as the leading paradigm in performing un-
supervised and semi-supervised tasks like classification and OOD detection [1, 81]. GAN has
been shown to outperform classical OOD techniques on benchmark datasets [81]. This network is
used along with an adversarial training loss function to perform unsupervised OOD detection [1].
Further, Adversarial Variational Bayes (AVB), a training technique to improve the inference model
of VAE [50]. It combines VAEs and GANs to rephrase the maximum-likelihood problem of the
VAE as a two player game. Although GAN has performed well in detecting OOD data, there are

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 29

several problems in using them [10, 75]. These problems are (1) training complexity because of the
instability between the generator and discriminator networks, and (2) mode collapse problem that
results in the generator only producing similar samples or, in the worst-case only a single sample.

Adversarial Autoencoder [47] is a probabilistic network that uses the reconstruction capability
of an autoencoder along with the adversarial training procedures of a GAN. For example, the
reconstruction error is combined with the likelihood in the latent space to perform anomaly
detection [4]. Vu, Ha Son et al. [75] have proposed a Dual Adversarial Autoencoder network
that uses two autoencoders and discriminators to perform anomaly detection. However, training
Adversarial Autoencoders is expensive as it requires training both the autoencoder network and
the adversarial network.

6.1.2 Variational Autoencoders (VAE). VAE is the other unsupervised probabilistic generative model
that has been used because of its capability to learn latent space of the input data [36]. The latent
variables generated by these models are used to learn the correlation between the features of the
input data [43]. The VAE based OOD approaches can be classified into two categories.

Reconstruction based techniques use the normalized difference between each point of the
input data (𝑥) and the reconstructed data (𝑥 ′) generated by a VAE. For example, the authors in [8, 59]
have used the pixel-wise mean square distance between the input image and the reconstructed
image as the metric for anomaly detection. As an extension, the reconstruction probability that uses
the stochastic latent variables of VAE has been used to compute a probabilistic anomaly score [2].
Although being widely used, this approach can be error-prone when the OOD samples lie on the
boundary of the training distribution [12].

Latent space based techniques use distance and density-based metrics on the latent space
generated by the encoder of VAE to detect OOD observations. For example, Denouden et al. [12]
compute the Mahalanobis distance between the latent distributions of the test image and the
mean vector of the images in the training set, which is also combined with the reconstruction
loss to detect OOD images. The authors in [71] evaluate the latent space with different metrics
like Euclidean distance and Bhattacharyya distance for OOD detection. Although being used
for OOD detection [12, 71], there is a known problem, that the generated latent variables are
unstructured, entangled, and lack the ease of understanding [38]. To address this problem, there
has been significant research in structuring and disentangling the latent space [5, 9, 29, 49], which
is discussed in the following section.

6.2 Disentangling Latent Representations
Learning a disentangled latent space have been shown to be beneficial for several tasks like pose
invariant face recognition [55, 69], video predictions [30], and anomaly detection [76]. While there
are several approaches to learning a disentangled latent space [5], of particular interest to this
work are approaches that use the VAE structure. Recently, variants of a VAE like FactorVAE [35],
𝛽-VAE [29], and 𝛽-TCVAE [9] have been used. Among these, 𝛽-VAE has been widely used because
it provides a single 𝛽 gating hyperparameter that can be used control the latent space disentangle-
ment [29]. Mathieu, Emile et al. [49] illustrates that a 𝛽-VAE generates a lower overlap of the latent
variables as compared to the original VAE, and illustrates how different values of 𝛽 impacts the
latent variable overlap. Further, Locatello et al. [44] have illustrated with experiments that network
inductive biases are necessary to achieve unsupervised disentanglement.
In recent years 𝛽-VAE is used for OOD detection tasks because of its ability to generate a

disentangled latent space. In our previous work [66], we have used the tuning capability of a 𝛽-VAE
to make it sensitive to different image features (e.g., traffic density, pedestrians) and then used it to
detect changes in those features. Graydon et al. [25] have used the latent variables generated by a

30 S. Ramakrishna et al.

𝛽-VAE along with Gaussian mixture models to identify OOD on cancer datasets. A combination
of the reconstruction error and the distances among the latent variables of a 𝛽-VAE is used as the
anomaly score [42]. Further, a 𝛽-VAE is shown to perform better for anomaly detection on MRI
datasets as compared to a classical VAE [82]. However, these approaches either randomly select
the 𝛽 values or manually tune them, which can be expensive and time consuming. In contrast, our
work provides a Bayesian Optimization based heuristic to select the 𝛽 value.

Further, to measure the level of disentanglement, several methods and metrics are available.
Visualization of reconstructions by inspecting latent traversals has been a simple method that has
been widely used. But visualization alone is not sufficient, as discussed in Section 1. So, several
qualitative and quantitative metrics have been proposed for this task. A classifier based supervised
learning metrics [24, 29, 35] have been designed when all the underlying generative factors of an
image are known. For example, the BetaVAE metric [29] builds a linear classifier that predicts the
index of a fixed factor with variations. However, this metric has a drawback of axis alignment,
and this is overcome by the FactorVAE metric [35] by using a majority vote classifier. Also, these
metrics require building and tuning the sensitivity of the classifiers, which is difficult to design and
train. This problem is overcome by the Mutual Information Gap [9] metric, which is a quantitative
metric based on the mutual information between the features and latent variables. In this work, we
have used MIG to measure the level of latent space disentanglement.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a design approach to generate a partially disentangled latent space
and learn an approximate mapping between the latent variables and features for OOD detection
and reasoning. To generate the disentangled latent space, we use a 𝛽-VAE network and tune its
hyperparameter (𝑛, 𝛽) using a Bayesian Optimization heuristic. Next, we perform a latent variable
mapping to identify the most informative latent variables for detection and identify latent variable(s)
which are sensitive to specific features and use them for reasoning the OOD problem. We evaluated
our approach using an AV example in the CARLA simulation and illustrated the preliminary results
from the nuImages dataset. Our evaluation has shown that the detector designed using our approach
has good robustness, minimum sensitivity, and low execution time. The detector could also detect
OOD images and identify the most likely feature(s) causing it.
Future extensions and applications of the proposed approach include: (1) improving the latent

variable mapping heuristic to perform robust correspondence between the features and latent
variables, (2) explore alternate metrics such as Wasserstein distance for latent variable mapping, (3)
apply the approach to real-world datasets and research CPS testbeds like DeepNNCar [57], and
(4) use the anomaly detection results to perform higher-level decision making such as controller
selection or enactment of contingency plans.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers of our journal for their insightful comments and valuable
suggestions. This work was supported by the DARPA Assured Autonomy program, the Air Force
Research Laboratory, and in part by MoE, Singapore, Tier-2 grant number MOE2019-T2-2-040. Any
opinions, findings, and conclusions, or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of DARPA, AFRL, or MoE Singapore.

REFERENCES
[1] Samet Akcay, Amir Atapour-Abarghouei, and Toby P. Breckon. 2019. GANomaly: Semi-supervised Anomaly Detection

via Adversarial Training. In Computer Vision – ACCV 2018, C. V. Jawahar, Hongdong Li, Greg Mori, and Konrad
Schindler (Eds.). Springer International Publishing, Cham, 622–637.

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 31

[2] Jinwon An and Sungzoon Cho. 2015. Variational autoencoder based anomaly detection using reconstruction probability.
Special Lecture on IE 2, 1 (2015), 1–18.

[3] Michèle Basseville, Igor V Nikiforov, et al. 1993. Detection of abrupt changes: theory and application. Vol. 104. prentice
Hall Englewood Cliffs.

[4] Laura Beggel, Michael Pfeiffer, and Bernd Bischl. 2019. Robust anomaly detection in images using adversarial
autoencoders. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer,
206–222.

[5] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence 35, 8 (2013), 1798–1828.

[6] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[7] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan,
Giancarlo Baldan, and Oscar Beijbom. 2020. nuscenes: A multimodal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 11621–11631.

[8] Feiyang Cai and Xenofon Koutsoukos. 2020. Real-time out-of-distribution detection in learning-enabled cyber-physical
systems. In 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). IEEE, 174–183.

[9] Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. 2018. Isolating sources of disentanglement in
variational autoencoders. In Advances in Neural Information Processing Systems. 2610–2620.

[10] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A Bharath. 2018.
Generative adversarial networks: An overview. IEEE Signal Processing Magazine 35, 1 (2018), 53–65.

[11] Igor Dejanović, Renata Vaderna, Gordana Milosavljević, and Željko Vuković. 2017. TextX: a python tool for Domain-
Specific Languages implementation. Knowledge-Based Systems 115 (2017), 1–4.

[12] Taylor Denouden, Rick Salay, Krzysztof Czarnecki, Vahdat Abdelzad, Buu Phan, and Sachin Vernekar. 2018. Improving
reconstruction autoencoder out-of-distribution detection with mahalanobis distance. arXiv:1812.02765 (2018).

[13] Terrance DeVries and GrahamWTaylor. 2018. Learning confidence for out-of-distribution detection in neural networks.
arXiv preprint arXiv:1802.04865 (2018).

[14] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. 2017. CARLA: An open urban
driving simulator. arXiv:1711.03938 (2017).

[15] Abhishek Dubey, Gabor Karsai, and Nagabhushan Mahadevan. 2011. Model-based software health management for
real-time systems. In 2011 Aerospace Conference. IEEE, 1–18.

[16] Sheri Edwards. 2008. Elements of Information Theory, Thomas M. Cover, Joy A. Thomas, John Wiley & Sons, Inc.(2006).
, 18 pages.

[17] İkbal Eski and SCahin Yildirim. 2014. Design of neural network control system for controlling trajectory of autonomous
underwater vehicles. International Journal of Advanced Robotic Systems 11, 1 (2014), 7.

[18] Valentina Fedorova, Alex Gammerman, Ilia Nouretdinov, and Vladimir Vovk. 2012. Plug-in martingales for testing
exchangeability on-line. arXiv preprint arXiv:1204.3251 (2012).

[19] [Online] foretellix. [n.d.]. Open M-SDL. https://www.foretellix.com/open-language/
[20] Daniel J Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L Sangiovanni-Vincentelli, and Sanjit A

Seshia. 2019. Scenic: a language for scenario specification and scene generation. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 63–78.

[21] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and John P Cunningham. 2014. Bayesian
Optimization with Inequality Constraints.. In ICML, Vol. 2014. 937–945.

[22] Yonatan Geifman, Guy Uziel, and Ran El-Yaniv. 2018. Bias-reduced uncertainty estimation for deep neural classifiers.
arXiv preprint arXiv:1805.08206 (2018).

[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. 2014. Generative adversarial nets. In Advances in neural information processing systems. 2672–2680.

[24] Will Grathwohl and Aaron Wilson. 2016. Disentangling space and time in video with hierarchical variational auto-
encoders. arXiv preprint arXiv:1612.04440 (2016).

[25] Tucker Graydon and Ferat Sahin. 2018. Novelty Detection and Analysis with a Beta-VAE Network. In 2018 IEEE
International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2687–2691.

[26] C. Hartsell, S. Ramakrishna, A. Dubey, D. Stojcsics, N. Mahadevan, and G. Karsai. 2021. ReSonAte: A Runtime Risk
Assessment Framework for Autonomous Systems. In 2021 2021 International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS) (SEAMS). IEEE Computer Society, Los Alamitos, CA, USA, 118–129.
https://doi.org/10.1109/SEAMS51251.2021.00025

[27] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The elements of statistical learning: data mining, inference,
and prediction. Springer Science & Business Media.

https://www.foretellix.com/open-language/
https://doi.org/10.1109/SEAMS51251.2021.00025

32 S. Ramakrishna et al.

[28] Christina Heinze-Deml and Nicolai Meinshausen. 2021. Conditional variance penalties and domain shift robustness.
Machine Learning 110, 2 (2021), 303–348.

[29] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, X-avier Glorot, Matthew Botvinick, Shakir Mohamed,
and Alexan-der Lerchner. 2016. Beta-VAE: Learning basic visual concepts with a constrained variational framework.
ICLR17 (2016).

[30] Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li F Fei-Fei, and Juan Carlos Niebles. 2018. Learning to decompose and
disentangle representations for video prediction. In Advances in Neural Information Processing Systems. 517–526.

[31] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. 2019. Automated machine learning: methods, systems, challenges.
Springer Nature.

[32] Marek Jakab, Lukas Hudec, andWanda Benesova. 2020. Partial disentanglement of hierarchical variational auto-encoder
for texture synthesis. IET Computer Vision 14, 8 (2020), 564–574.

[33] Susmit Jha, Sunny Raj, Steven Fernandes, Sumit Kumar Jha, Somesh Jha, Brian Jalaian, Gunjan Verma, and Ananthram
Swami. 2019. Attribution-based confidence metric for deep neural networks. (2019).

[34] Donald R Jones, Matthias Schonlau, and William J Welch. 1998. Efficient global optimization of expensive black-box
functions. Journal of Global optimization 13, 4 (1998), 455–492.

[35] Hyunjik Kim and Andriy Mnih. 2018. Disentangling by factorising. In International Conference on Machine Learning.
PMLR, 2649–2658.

[36] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).
[37] Diederik P Kingma and MaxWelling. 2019. An introduction to variational autoencoders. arXiv preprint arXiv:1906.02691

(2019).
[38] Jack Klys, Jake Snell, and Richard Zemel. 2018. Learning latent subspaces in variational autoencoders. In Advances in

Neural Information Processing Systems. 6444–6454.
[39] ByungSoo Ko, Ho-Jin Choi, Chansol Hong, Jong-Hwan Kim, Oh Chul Kwon, and Chang D Yoo. 2017. Neural network-

based autonomous navigation for a homecare mobile robot. In 2017 IEEE International Conference on Big Data and
Smart Computing (BigComp). IEEE, 403–406.

[40] Puneet Kohli and Anjali Chadha. 2019. Enabling pedestrian safety using computer vision techniques: A case study of
the 2018 uber inc. self-driving car crash. In Future of Information and Communication Conference. Springer, 261–279.

[41] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Simple and Scalable Predictive Uncertainty
Estimation Using Deep Ensembles. In Proceedings of the 31st International Conference on Neural Information Processing
Systems (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 6405–6416.

[42] Xiaoyan Li. 2020. Anomaly Detection Based on Disentangled Representation Learning. Ph.D. Dissertation. Université
d’Ottawa/University of Ottawa.

[43] Yang Liu, Eunice Jun, Qisheng Li, and Jeffrey Heer. 2019. Latent space cartography: Visual analysis of vector space
embeddings. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 67–78.

[44] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf, and Olivier
Bachem. 2019. Challenging common assumptions in the unsupervised learning of disentangled representations. In
international conference on machine learning. PMLR, 4114–4124.

[45] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learning transferable features with deep
adaptation networks. In International conference on machine learning. PMLR, 97–105.

[46] David JC MacKay. 1992. A practical Bayesian framework for backpropagation networks. Neural computation 4, 3
(1992), 448–472.

[47] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. 2015. Adversarial autoencoders.
arXiv preprint arXiv:1511.05644 (2015).

[48] Francisco J Martinez-Estudillo, Pedro Antonio Gutiérrez, César Hervás, and Juan Carlos Fernández. 2008. Evolutionary
learning by a sensitivity-accuracy approach for multi-class problems. In 2008 IEEE Congress on Evolutionary Computation
(IEEE World Congress on Computational Intelligence). IEEE, 1581–1588.

[49] Emile Mathieu, Tom Rainforth, Nana Siddharth, and Yee Whye Teh. 2019. Disentangling disentanglement in variational
autoencoders. In International Conference on Machine Learning. PMLR, 4402–4412.

[50] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. 2017. Adversarial variational bayes: Unifying variational
autoencoders and generative adversarial networks. In International Conference on Machine Learning. PMLR, 2391–2400.

[51] Radford M Neal. 2012. Bayesian learning for neural networks. Vol. 118. Springer Science & Business Media.
[52] [Online] nuscenes. [n.d.]. nuImage dataset. https://www.nuscenes.org/nuimages
[53] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE Transactions on knowledge and data

engineering 22, 10 (2009), 1345–1359.
[54] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Automated whitebox testing of deep learning

systems. In Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 1–18.

https://www.nuscenes.org/nuimages

Efficient Out-of-Distribution Detection Using Latent Space of 𝛽-VAE for Cyber-Physical Systems 33

[55] Xi Peng, Xiang Yu, Kihyuk Sohn, Dimitris N Metaxas, and Manmohan Chandraker. 2017. Reconstruction-based
disentanglement for pose-invariant face recognition. In Proceedings of the IEEE international conference on computer
vision. 1623–1632.

[56] Dean A Pomerleau. 1989. ALVINN: An autonomous land vehicle in a neural network. In Advances in neural information
processing systems. 305–313.

[57] Shreyas Ramakrishna, Charles Harstell, Matthew P. Burruss, Gabor Karsai, and Abhishek Dubey. 2020. Dynamic-
Weighted Simplex Strategy for Learning Enabled Cyber Physical Systems. Journal of Systems Architecture (2020),
101760.

[58] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. 2011. Classifier chains for multi-label classification.
Machine learning 85, 3 (2011), 333.

[59] Charles Richter and Nicholas Roy. 2017. Safe visual navigation via deep learning and novelty detection. (2017).
[60] Haakon Ringberg, Augustin Soule, Jennifer Rexford, and Christophe Diot. 2007. Sensitivity of PCA for traffic anomaly

detection. In Proceedings of the 2007 ACM SIGMETRICS international conference on Measurement and modeling of
computer systems. 109–120.

[61] Giampaolo Rodola. 2016. Psutil package: a cross-platform library for retrieving information on running processes and
system utilization.

[62] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel
Müller, andMarius Kloft. 2018. Deep one-class classification. In International conference onmachine learning. 4393–4402.

[63] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C Williamson. 2001. Estimating the
support of a high-dimensional distribution. Neural computation 13, 7 (2001), 1443–1471.

[64] D Seto, BH Krogh, L Sha, and A Chutinan. 1998. The simplex architecture for safe on-line control system upgrades. In
Proceedings of the American Control Conference, Vol. 6. AMERICAN AUTOMATIC CONTROL COUNCIL, 3504–3508.

[65] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian optimization of machine learning
algorithms. In Advances in neural information processing systems. 2951–2959.

[66] V. Sundar, S. Ramakrishna, Z. Rahiminasab, A. Easwaran, and A. Dubey. 2020. Out-of-Distribution Detection in
Multi-Label Datasets using Latent Space of Î2-VAE. In 2020 IEEE Security and Privacy Workshops (SPW). IEEE Computer
Society, Los Alamitos, CA, USA, 250–255. https://doi.org/10.1109/SPW50608.2020.00057

[67] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep networks. In International
Conference on Machine Learning. PMLR, 3319–3328.

[68] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated testing of deep-neural-network-
driven autonomous cars. In Proceedings of the 40th International Conference on Software Engineering. ACM, 303–314.

[69] Luan Tran, Xi Yin, and Xiaoming Liu. 2017. Disentangled representation learning gan for pose-invariant face recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition. 1415–1424.

[70] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. 2009. Mining multi-label data. In Data mining and
knowledge discovery handbook. Springer, 667–685.

[71] Aleksei Vasilev, Vladimir Golkov, Marc Meissner, Ilona Lipp, Eleonora Sgarlata, Valentina Tomassini, Derek K. Jones,
and Daniel Cremers. 2020. q-Space Novelty Detection with Variational Autoencoders. In Computational Diffusion
MRI, Elisenda Bonet-Carne, Jana Hutter, Marco Palombo, Marco Pizzolato, Farshid Sepehrband, and Fan Zhang (Eds.).
Springer International Publishing, Cham, 113–124.

[72] Bill Vlasic and Neal E Boudette. 2016. ’Self-Driving Tesla Was Involved in Fatal Crash,’US Says. New York Times 302016
(2016).

[73] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C. Duchi, Vittorio Murino, and Silvio Savarese. 2018. General-
izing to Unseen Domains via Adversarial Data Augmentation. In NeurIPS. 5339–5349. http://papers.nips.cc/paper/7779-
generalizing-to-unseen-domains-via-adversarial-data-augmentation

[74] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. 2005. Algorithmic learning in a random world. Springer Science
& Business Media.

[75] Ha Son Vu, Daisuke Ueta, Kiyoshi Hashimoto, Kazuki Maeno, Sugiri Pranata, and Sheng Mei Shen. 2019. Anomaly
detection with adversarial dual autoencoders. arXiv preprint arXiv:1902.06924 (2019).

[76] Shuo Wang, Tianle Chen, Shangyu Chen, C. Rudolph, S. Nepal, and M. Grobler. 2020. OIAD: One-for-all Image
Anomaly Detection with Disentanglement Learning. 2020 International Joint Conference on Neural Networks (IJCNN)
(2020), 1–8.

[77] Shijin Wang, Jianbo Yu, Edzel Lapira, and Jay Lee. 2013. A modified support vector data description based novelty
detection approach for machinery components. Applied Soft Computing 13, 2 (2013), 1193–1205.

[78] Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. 2019. Characterizing and avoiding negative transfer.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11293–11302.

[79] BP Welford. 1962. Note on a method for calculating corrected sums of squares and products. Technometrics 4, 3 (1962),
419–420.

https://doi.org/10.1109/SPW50608.2020.00057
http://papers.nips.cc/paper/7779-generalizing-to-unseen-domains-via-adversarial-data-augmentation
http://papers.nips.cc/paper/7779-generalizing-to-unseen-domains-via-adversarial-data-augmentation

34 S. Ramakrishna et al.

[80] Chih-Kuan Yeh, Wei-Chieh Wu, Wei-Jen Ko, and Yu-Chiang Frank Wang. 2017. Learning deep latent space for
multi-label classification. In Thirty-First AAAI Conference on Artificial Intelligence.

[81] Houssam Zenati, Chuan-Sheng Foo, Bruno Lecouat, G. Manek, and V. Chandrasekhar. 2018. Efficient GAN-Based
Anomaly Detection. ArXiv abs/1802.06222 (2018).

[82] Leixin Zhou, Wenxiang Deng, and Xiaodong Wu. 2020. Unsupervised anomaly localization using VAE and beta-VAE.
ArXiv abs/2005.10686 (2020).

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Background
	3.1 Kullback-Leibler (KL) divergence
	3.2 -Variational Autoencoder (-VAE)
	3.3 MIG
	3.4 Inductive Conformal Prediction (ICP)
	3.5 CUSUM

	4 Our Approach
	4.1 Data partitioning
	4.2 Latent Space Encoding
	4.3 Latent Variable Mapping
	4.4 Runtime Out-of-Distribution Detection

	5 Experiments and Results
	5.1 System Overview
	5.2 -VAE Detector
	5.3 Out-of-Distribution Detection Results from CARLA Simulation
	5.4 Detection Results from Competing Baselines
	5.5 OOD Detection Results from nuImages dataset
	5.6 Discussion

	6 Related Work
	6.1 Probabilistic One-class Classifiers
	6.2 Disentangling Latent Representations

	7 Conclusions and Future Work
	References

