
Deep-RBF Networks for Anomaly Detection in
Automotive Cyber-Physical Systems

Matthew Burruss∗§, Shreyas Ramakrishna†, and Abhishek Dubey†
∗ Microsoft Corporation, † Vanderbilt University

Abstract—Deep Neural Networks (DNNs) are popularly used
for implementing autonomy related tasks in automotive Cyber-
Physical Systems (CPSs). However, these networks have been
shown to make erroneous predictions to anomalous inputs,
which manifests either due to Out-of-Distribution (OOD) data or
adversarial attacks. To detect these anomalies, a separate DNN
called assurance monitor is often trained and used in parallel
to the controller DNN, increasing the resource burden and
latency. We hypothesize that a single network that can perform
controller predictions and anomaly detection is necessary to
reduce the resource requirements. Deep-Radial Basis Function
(RBF) networks provide a rejection class alongside the class
predictions, which can be utilized for detecting anomalies at
runtime. However, the use of RBF activation functions limits
the applicability of these networks to only classification tasks. In
this paper, we show how the deep-RBF network can be used for
detecting anomalies in CPS regression tasks such as continuous
steering predictions. Further, we design deep-RBF networks using
popular DNNs such as NVIDIA DAVE-II, and ResNet20, and then
use the resulting rejection class for detecting adversarial attacks
such as a physical attack and data poison attack. Finally, we
evaluate these attacks and the trained deep-RBF networks using
a hardware CPS testbed called DeepNNCar and a real-world
German Traffic Sign Benchmark (GTSB) dataset. Our results
show that the deep-RBF networks can robustly detect these
attacks in a short time without additional resource requirements.

Index Terms—Cyber-Physical Systems, Deep Neural Networks,
Radial Basis Functions, Adversarial Attacks

I. INTRODUCTION

Emerging Trend: Deep Neural Networks (DNNs) are
popularly used for implementing autonomy related tasks in
automotive Cyber-Physical Systems (CPS). One way to use
these networks in autonomous driving is in an end-to-end (e2e)
fashion, where the network takes in sensory inputs (e.g. camera
images) to predict control actions (e.g. steer) (see Fig. 1). A
well-known example of an e2e network is NVIDIA’s DAVE-
II Convolutional Neural Network (CNN) [1] that was used
to steer a car autonomously around the city of New Jersey.
Despite being widely used, these networks are shown to be
susceptible to anomalies that manifest as Out-Of-Distribution
(OOD) data or adversarial attacks. To detect these anomalies, a
separate DNN called Assurance Monitor (AM) is often trained
and used in parallel to the controller DNN (see Fig. 1). These
monitors identify if an operational test input to the DNN
belongs to the training distribution or not.

State-of-the-art and Challenges: Recently, generative
models such as Generative Adversarial Networks (GANs), and

§Work performed during Master Thesis at Vanderbilt University.

Environment
(sensor inputs)

Perception
DNN

Assurance
Monitor

Controller Vehicle

end-to-end control

Fig. 1: end-to-end automotive CPS architecture with an assurance monitor.
The monitor receives the same sensory input as the controller DNN, and its
detection results are often used in control decision making.

variants of the Autoencoder family (e.g. Variational Autoen-
coder (VAE)) have been popularly used as monitors to detect
DNN based anomalies. Although these monitors have shown
robust performance for anomaly detection in CPSs [2], [3],
they introduce additional resource and time overhead as found
out in our previous work [4]. We hypothesize that a single
DNN to perform both controller predictions and anomaly
detection is required for CPSs which usually have limited
resources and short inference times. In this direction, Amini,
Alexander, et al. [5] has used a single VAE to perform con-
tinuous steering predictions and anomaly detection. However,
generative models are dependent on several hyperparameters
(e.g. latent space size), and training them is challenging (e.g.
mode collapse problem of GANs).

Deep-Radial Basis Function (RBF) networks [6] provide
a rejection class alongside the class predictions, which can
be utilized for anomaly detection. These networks are con-
ventional DNNs with an output RBF layer and do not have
additional hyperparameters to tune. Recently, the rejection ca-
pability has been used to detect adversaries in toy classification
datasets such as MNIST [7], and CIFAR10 [8]. However, to
the best of our knowledge, it has yet to be shown whether
these networks are capable of detecting anomalies in the CPS
domain. Additionally, these networks are mostly designed for
classification tasks, limiting their utility in regression tasks.

Our Contributions: In this work we design a single deep-
RBF network for predicting control actions (e.g. steering) and
detecting anomalies (especially adversarial attacks) in CPS
regression tasks. We hypothesize that the non-linearity intro-
duced by the RBF layer decreases the network’s susceptibility
to anomalies (especially gradient attacks) while increasing
its confidence in recognizing in-distribution data and conse-
quently rejecting OOD data. However, as these networks are
limited to classification tasks, we discuss the steps required for
transforming a CPS regression task (continuous steering) to a

ar
X

iv
:2

10
3.

14
17

2v
1

 [
cs

.L
G

]
 2

5
M

ar
 2

02
1

classification task (discreet steering classes). We then integrate
RBFs to the output layer of well-known DNNs such as
NVIDIA’s DAVE-II and ResNet20 and train the resulting deep-
RBF network. We then use the resulting rejection class of the
trained network to detect several adversarial attacks including
physical attacks and data poison attacks. We craft a physical
attack on a hardware CPS testbed called DeepNNCar [9]
which performs e2e steering within a track. Further, we craft a
data poison attack on the real-world traffic sign dataset called
German Traffic Sign Benchmark (GTSB). Our results show
that the deep-RBF network can effectively detect physical
attacks with an F1-score of 93.53% within a short time of 44
milliseconds. Further, the network shows higher robustness to
poisoned data and requires a significantly larger (35%) part of
the GTSB dataset that needs poisoning for misclassifications.

Outline: In Section II we provide a brief overview of
the existing methods in detecting DNN related anomalies.
In Section III we introduce the deep-RBF networks and the
adversarial examples of interest to this work. In Section IV we
describe a workflow for anomaly detection using deep-RBF
networks. In Section V we evaluate the trained network for
detecting adversarial attacks on two CPS applications. Finally,
in Section VI we present our conclusions and the possible
future extensions.

II. RELATED WORK

DNNs have recently been used as Assurance Monitors for
detecting CPS related anomalies that manifest either due to
OOD data or adversarial attacks. Generative models such as
Generative Adversarial Networks (GANs), and variants of
Autoencoders (e.g. VAE) have been recently used to detect
DNN related anomalies. In our previous work [3], [10] we
used the disentangled latent space generated by a β-VAE to
detect automotive CPS related OOD conditions such as high
brightness, and high precipitation. For the same domain, the
authors in [2] have used the reconstruction capability of a VAE
to detect OOD data (high precipitation), and physical attacks.
These authors have also used a VAE based regression model
for detecting an FGSM attack [11]. In another work [12], a
Gaussian Mixture VAE has been used to defend against several
black-box and white-box attacks. Despite robust detection
capabilities, these models require an independent DNN to be
trained in parallel to the controller DNN, which adds resource
burden and latency as observed in our previous work [4].

To address this, the authors in [5] have used a single
VAE network for both controller predictions and anomaly
detection. Though this is significant for reducing the resource
burden, the encoder-decoder architecture of the VAE is still
resource expensive. Additionally, the detection efficiency of
the VAE depends on hyperparameters (e.g. size of the latent
space) which has no standard value. Deep-RBF networks
are another variant of AMs that have shown robustness in
detecting anomalies, especially adversarial attacks [6]. Zadeh.
et al. [7] has shown a single deep-RBF network is capable of
predicting both class predictions and anomalies without the
need for tuning complex hyperparameters. These networks

have a DNN structure with RBF attached to the output
layer. The classification capability of the RBF along with a
threshold is used as a rejection class to detect adversarial
attacks on datasets such as MNIST [7], and CIFAR10 [8].
However, RBFs limit the applicability of these networks only
to classification tasks on trivial datasets such as MNIST. In this
work, we transform a CPS regression task to classification and
evaluate the deep-RBF network’s anomaly detection capability
for runtime CPS applications.

Although the above discussed DNN variants have shown
robustness against several anomalies, their defense capability
is not explored for data poisoning attacks. Existing methods
often focus on detecting the poisoned data or removing them.
Game theory models [13], or ensemble of classifiers [14]
have been popular approaches for detecting the poisoned
data. While these approaches have shown robustness against
data poisoning, the game theory approach is complicated and
difficult to integrate with the existing system. Additionally, the
ensemble of classifiers is resource inefficient as a large number
of classifiers are often required. Further, data sanitization
[15] has been used to remove the poisoned data from the
training set. This approach has worked well but it relies on
the availability of a certified clean training set which may
not always be available. To the best of our knowledge, the
activation clustering (AC) [16] is the only method that can
clean a poisoned dataset without relying on a certified clean
training set. However, this method has many hyperparameters
(e.g. the number of clusters, dimensions to reduce, etc.) and
relies on the assumption that a significant portion of the
dataset has been poisoned to have discriminative clusters. Such
assumptions fail in realistic sparsely poisoned datasets (<10%)
[17]. We hypothesize that a deep-RBF network trained on a
sparsely poisoned dataset can be used for the discriminative
ordering of clean and poisoned data without the need for a
certified clean training set.

III. BACKGROUND

In this section we briefly introduce the deep-RBF networks
and the adversarial anomalies that are used in this work.

A. Deep-RBF network

Deep-RBF network is a conventional DNN with an output
layer of RBF activation functions. A RBF is a real-valued
function that measures the distance of an input x to some
prototype vector. The similarity measure can be captured in
the following definition of a RBF unit using `p-norm distance
where A ∈ Rn×l, b ∈ Rl, x ∈ Rn and l ≤ n [7].

φ(x) = (||ATx+ b||p)p (1)

In the context of a DNN, RBF units can be applied to the
high-level features f(x) extracted by the model from the raw
input x in order to classify the input into k classes such that
k ∈ {1, .., c}. Using the Euclidean metric and allowing A =
In, the deep-RBF unit is defined as follows:

φk(x) = (||f(x)−Wk||2)2 (2)

2

Steer PWM
Duty Cycle

Rejection Class

Input
Conv1

Conv2

Conv3
Conv4

Conv5
RBF6

24 @ (5,5) 36 @ (5,5) 48 @ (5,5) 64 @ (3,3) 64 @ (3,3)
10

Feature Extraction Classification

Outputs

RBF LayerConcolutional Layers

Fig. 2: Deep-RBF network for e2e control of the DeepNNCar example. The image features are extracted through the convolutional layers which are sent to
an RBF layer to perform classification. The outputs are the class predictions (discreet steering values), and a rejection class to detect anomalies.

where Wk ∈ R|f(x)| is a trainable weight vector intuitively
representing the learned prototype of class k. The prediction
category that results in the smallest distance is selected as
the correct class during the evaluation phase. In practice we
have found applying hyperbolic tangent function to the fea-
tures f(x) preceding the RBF layer and randomly initializing
W ∈ [−1, 1] achieves sufficient model performance.

1) Training Loss Function: The deep-RBF network can be
trained using a metrics-learning inspired loss function named
SoftML, which is shown in Eq. (3). The function was proposed
in [7] and is shown to avoid the vanishing gradient problem.

JSoftML =

N∑
i=1

(φyi(x
(i)) +

∑
j 6∈yi

log(1 + e(λ−φyi
(x(i))))) (3)

where yi is the correct class of input x(i), and λ > 0. The
first term in the cost function aims at decreasing the distance
between the prediction and the correct class, while the second
term aims at increasing the distance of the negative class.
Further, as discussed in [7], the value of λ has little effect
on convergence and can be arbitrarily chosen.

2) Interpreting deep-RBF network output: From a prob-
abilistic point of view, the Eq. (3) can be interpreted as the
negative log-likelihood as discussed in [7]. Therefore, the class
prediction output of the deep-RBF networks can be interpreted
as non-normalized probabilities following the transformation.

P (ŷ = k|x) = e−φk(x)(1 + eλ−φk(x))∏
j(1 + eλ−φk(x))

, k ∈ {1, 2, ..., c} (4)

A rejection class k = 0 can then be defined to capture the
probability that x belongs to no class in {1, 2, ..., c}.

P (ŷ = c+ 1|x) = 1∏
j(1 + eλ−φk(x))

(5)

Therefore, the output of a deep-RBF can be defined as:

ŷ(x) = argmax
k∈{1,...,c+1}

P (y = k|x) (6)

B. Problems

The Assurance Monitor must be able to detect adversarial
attacks, especially physical attacks in the environment and data
poisoning attacks. In general these attacks can be summarized

as deliberate perturbations added to the input of a DNN which
results in an erroneous output prediction. Algorithms to craft
adversarial examples differ in their goal and knowledge of the
DNN under consideration [18]. A white-box attack has access
to the DNN architecture and may be able to adjust model
parameters whereas a black-box attack has no knowledge of
the DNN, but they exploit any known corner cases [6].

Physical attacks are adversaries that are physically realizable
in the real world and they include perturbing physical objects
(e.g. traffic signs) that are captured as images that are fed
to DNNs. In this work, we adapt the physical adversary
introduced in [19], where physical black lines are added at
specific positions and angles to confuse an e2e model to
predict erroneous steering angle (see Fig. 4).

Data poisoning attacks modify the training procedure to
allow the attacker to exploit the poisoned model. In this
setting, an attacker can modify the training procedure, alters
the network’s logic, or manipulate labels in the training set to
encode a backdoor key. In this work we adopt the injected
pattern-key attack where the labels of the training set are
altered whenever a backdoor key is encoded into the training
input, allowing the attacker to exploit the attack by encoding
the backdoor key into a test instance [20] (see Fig. 7b).

Problem
Transformation

Deep-RBF design
and training

Anomaly
Detection

Training
Dataset

Nominal

Anomaly

Fig. 3: Workflow for detecting anomalies using deep-RBF networks. (1)
problem transformation to transform a regression task to classification, (2)
deep-RBF design and training, and (3) anomaly detection.

IV. ANOMALY DETECTION WORKFLOW

In this section we discuss the workflow (see Fig. 3) for
anomaly detection using deep-RBF networks. The steps in-
volved are: (1) problem transformation to transform a re-
gression task to classification (this step can be skipped for
classification tasks), (2) deep-RBF design and training, and
(3) anomaly detection.

3

A. Problem Transformation

Certain CPS tasks (e.g. control predictions) are regression-
based, and using the deep-RBF network for anomaly detection
requires transforming the regression task to classification. For
explanation, we consider an example of a perception DNN that
predicts continuous steering predictions. The DNN observes a
sequence of images Xk = xk · · ·xk−t from the environment
and predicts a continuous steering angle s in range [+θ,−θ].
Here, +θ corresponds to a full right turn, and −θ corresponds
to a complete left turn. This continuous steering angle needs
to be discretized into n different classes k = {0, 1,, n}. That
is, each class corresponds to a small steering angle range (sk)
is calculated as:

sk =
|+ θ|+ | − θ|

n
(7)

Where class k = 1 corresponds to a full right turn, and
class k = n corresponds to a full left turn. The intermediate
classes result in a certain right or left turn within [+θ,−θ]. The
number of classes (n) for the discretization is problem-specific,
but it can impact the sensitivity of the anomaly detection
and the control predictions, so should be carefully chosen.
A large number of classes will result in highly sensitive
detection resulting in high false negatives but will provide
fine-grained control over control predictions. A small number
of classes will make the detection insensitive resulting in
high false positives, but will not provide fine-grained control
over the control predictions. So, the number of classes must
be appropriately chosen to balance the robustness of control
predictions and anomaly detection.

B. Deep-RBF design and training

As discussed earlier, a deep-RBF network is a conventional
DNN with an RBF layer attached to the output. The deep-
RBF network for the DeepNNCar regression task (continuous
steering prediction) is shown in Fig. 2. In this network, the
image features are extracted through the convolutional layers
which are sent to an RBF layer to perform classification.
The number of RBF units in the output layer corresponds
to the number of classes (n) that was derived in the previous
section (For a classification example, the number of RBF units
directly correspond to the number of classes in the task). The
output of the deep-RBF network has two components: (1) class
predictions - for our running example is the discreet steering
angle (or a steering class), and (2) rejection class probability
- can be utilized for anomaly detection.

The designed deep-RBF network can then be trained using
the SoftML loss function discussed in Eq. (3). The training
does not involve additional hyperparameters other than the
standard ones such as the number of epochs, batch size,
learning rate, and the optimizer type. However, the only
problem in training the network is that the RBF units introduce
high non-linearity making it difficult to train the network, so
we apply the RBF layer directly after the convolutional layers
rather than after a series of fully-connected layers.

Algorithm 1 Anomaly detection using deep-RBF network
Input: Image xt at time t.
Output: Binary output Anomt.
Require: Trained deep-RBF network ARBF , Rejection thresh-
old γ.

1: P (ŷt = k|xt), P (ŷt = c+ 1|xt) = ARBF (xt)
2: if P (k = c+ 1|x) ≥ γ then
3: Anomt = 1
4: else
5: Anomt = 0
6: end if
7: return Anomt

C. Anomaly Detection

During evaluation the test inputs are passed through the
trained deep-RBF network, and the output class predictions
(discreet steering) can be used to control the CPS, and the
rejection class probability (Eq. (5)) can be used along with
a pre-selected threshold γ to perform anomaly detection as
shown in Algorithm 1. That is, if P (ŷt = c + 1|xt) ≥ γ, the
input can be isolated to be an anomaly.

At runtime, the output of the anomaly detector can be used
in contingency planning and high-level decision-making tasks
to improve the safety of CPS.

V. EVALUATION

We evaluate 1 the performance of the deep-RBF networks
for detecting (a) black box physical attack on a hardware
testbed called DeepNNCar which performs steering predic-
tions (regression), and (b) data poisoning attack on the real
world GTSB classification dataset.

A. Detecting Black Box Physical Attack

1) Experimental Setup: In our first example, we implement
the black-box physical attack introduced in [21] on a hardware
platform called DeepNNCar [9]. This testbed is built on the
chassis of a Traxxas Slash 2WD 1/10 RC car and computa-
tionally powered by a Raspberry Pi 3. The sensors on the car
include a forward-looking camera that is configured to collect
RGB images of size (320x240) @ 30 FPS, and a slot-type
IR opto-coupler attached near the rear wheel to measure the
RPM and compute speed. The primary controller is NVIDIA’s
DAVE-II CNN which uses forward-looking camera images to
steer the car autonomously. The car is first manually driven to
collect training data which includes 6000 images, steering, and
speed PWM values. This set is randomly split into training,
testing, and validation in a ratio of 70/15/15%. We then follow
the steps in Section IV-A, to transform this regression task into
classification by discretizing the continuous steering labels into
10 categories. Each discretized class represents a range of 6°,
allowing the car to turn discretely between -30° (sharp left,
yi = 0) and 30° (sharp right, yi = 9).

1Jupyter notebooks to replicate the experiments can be found at
https://github.com/Shreyasramakrishna90/RBF-Adversarial-Detection.git

4

(a) DAVE-II DNN (b) RBF DAVE-II DNN

Fig. 4: The physical attack caused DeepNNCar to crash when being con-
trolled by the DAVE-II network; however its RBF extension was able
to detect the anomaly and safely stop the car. Videos of these runs
can be found on our github (https://github.com/Shreyasramakrishna90/RBF-
Adversarial-Detection.git).

The physical attack is performed by placing a black lane
across the track as shown in Fig. 4. The lane is placed at four
distinct sections of the track (a left, a straight leading to a left,
a right, and a straight leading to a right) at various angles.

2) Competing Baselines: Two baseline networks are com-
pared for the proposed detection method. First is the NVIDIA’s
DAVE-II regression network which is converted into a classi-
fication network (k=10) by adding 10 fully connected neurons
to the last layer followed by softmax activation. The other
is the RBF DAVE-II network which is designed by adding a
hyperbolic tangent activation layer following the convolutional
layers of the DAVE-II architecture and replacing the fully
connected layers with an RBF layer.

The networks are trained on 4200 training images for 150
epochs using adam optimizer, with categorical cross-entropy
loss for the DAVE-II network and SoftML loss for RBF
DAVE-II network. For the RBF DAVE-II network, we intro-
duce a rejection threshold of γ = 0.6, which is empirically
selected to reduce false positives.

3) Results: (a) Offline Experiments: We performed an
offline evaluation on 1028 images that were collected from
two trial runs around the track. This set had 908 clean images
(images with no physical attack line), and 120 images with
physical attack lines (OOD data). We denote a successful
attack on the DAVE-II network and RBF DAVE-II network
based on the failure criteria defined below.

criteria =

{
|ŷi − yi| > 1 fθ = DAV E − II
|ŷi − yi| > 1 ∧ ¬reject fθ = RBFDAV E − II

where fθ specifies which trained model is currently being
attacked. The failure criteria is selected because neither model
violated the bound |ŷi−yi| > 1 on the clean dataset when the
rejection class was ignored for the RBF DAVE-II network as
shown by the confusion matrices in Fig. 5. Furthermore, this
criteria allows us to reject the point anomalies per Eq. (5) and
Eq. (6). The criteria ensures that the RBF DAVE-II network
prediction is deemed erroneous if the prediction is off by more
than one true class and the RBF network fails to reject the
class.

On the 908 clean images, neither network had an erroneous
prediction, although the RBF DAVE-II network had a false-
positive rejection rate of 0.25. A false-positive can occur for
the RBF DAVE-II whenever |ŷi − yi| > 1 ∧ +reject or
when the prediction would have been considered safe but the

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.87 0.13 0 0 0 0 0 0 0 0

0.01 0.88 0.11 0 0 0 0 0 0 0

0 0.06 0.84 0.1 0 0 0 0 0 0

0 0 0.06 0.86 0.08 0 0 0 0 0

0 0 0 0.13 0.73 0.13 0 0 0 0

0 0 0 0 0.09 0.89 0.02 0 0 0

0 0 0 0 0 0.04 0.9 0.07 0 0

0 0 0 0 0 0 0.06 0.86 0.07 0

0 0 0 0 0 0 0 0.21 0.74 0.05

0 0 0 0 0 0 0 0 0.1 0.9

0.00

0.15

0.30

0.45

0.60

0.75

0.90

(a) DAVE-II Confusion Matrix

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.74 0.26 0 0 0 0 0 0 0 0

0 0.89 0.11 0 0 0 0 0 0 0

0 0.11 0.75 0.14 0 0 0 0 0 0

0 0 0.06 0.83 0.1 0.01 0 0 0 0

0 0 0 0.18 0.71 0.11 0 0 0 0

0 0 0 0 0.11 0.79 0.1 0 0 0

0 0 0 0 0 0.12 0.86 0.03 0 0

0 0 0 0 0 0 0.22 0.76 0.03 0

0 0 0 0 0 0 0 0.39 0.52 0.09

0 0 0 0 0 0 0 0 0.1 0.9

0.00

0.15

0.30

0.45

0.60

0.75

0.90

(b) RBF DAVE-II Confusion Matrix

Fig. 5: The i′th column in the confusion matrices above represents the ground
truth label of the prediction in the j′th row, where true-positives are defined
along the diagonal i = j. Neither the DAVE-II network (a) nor the RBF
DAVE-II network (b) violate the bound |ŷi − yi| > 1 on the clean dataset
(n = 908). This bound is the basis for the failure criteria with which we
evaluate the anomaly detection.

0.2 0.4 0.6 0.8 1.0
Rejection Class Probability

0

2

4

6

8

10

Hi
st

og
ra

m
 C

ou
nt

Clean Data
OOD Data

Fig. 6: A significant shift in the distribution of the rejection class probabilities
was discovered for the clean data and OOD data. The threshold for the
rejection class was chosen to be γ = 0.6.

network rejects the input. The false positives can likely be
reduced by data augmentation, increasing model capacity, or
adjusting training hyperparameters to improve the network’s
accuracy on clean data. Furthermore, one can add threshold
γ such that we only accept the rejection class whenever
P (k = c + 1|x) > γ; otherwise we only consider the
probability scores for classes {1, ..., c}.

Further for the entire 1028 images, the RBF DAVE-II
network exhibited a significant shift in the confidence of the
rejection class for images with a physical attack as shown
in Fig. 6. From this, we select the rejection class threshold
γ = 0.6 which covers the tail end of the rejection class
confidence for both the clean and OOD data (see Figure 6). We
did not use this threshold during the offline evaluation but we
use it during runtime experiments with the physical testbed.

Finally, we evaluated the DAVE-II network and the RBF

5

Actions DAVE-II RBF DAVE-II
Out-of-track 2 8

Successful Navigation 3 4
Safe Stop 7 NA

TABLE I: Performance of the DAVE-II and RBF DAVE-II in preventing the
DeepNNCar from going out-of-lane because of the physical attack.

Network Precision (%) Recall (%) F1-score (%)
RBF DAVE-II 96.4 90.83 93.53

VAE based
Reconstruction

88.5 90 89.24

TABLE II: Performance comparison of the RBF DAVE-II network and the
VAE based reconstruction network for physical attack images.

DAVE-II network along with the rejection threshold (γ) for
detecting anomalies in the 1028 images. The regular DAVE-II
network predicted 50% of the images into a wrong class based
on the failure criteria. Closer analysis of the predictions reveals
that the network always predicts a sharp left turn (ŷi ∈ {0, 1})
even when the drawn anomaly leads to the right. These results
align with previous findings that point anomalies can result
in consistent, high confidence misclassifications [22]. On the
other hand, the RBF DAVE-II misclassified 0% of the images
because the RBF DAVE-II was able to successfully reject the
anomalous images by putting them into the rejection class.

(b) Online Experiments: We implemented the RBF DAVE-
II network along the rejection threshold γ = 0.6 for runtime
anomaly detection on the physical testbed. If the rejection
class probability P (k = c + 1|x) > γ, the car was instructed
to stop using a reverse speed PWM. We also compared the
performance of the two baseline networks in preventing the car
from moving out-of-lane (see Table I). Each network is used
to run the car for 12 trial runs. For each trial, we approach
the attack lanes at a constant speed (0.5 m/s) and record the
number of times the two networks lead the car out-of-track.

To evaluate the performance we have classified the actions
of the car into three classes. An Out-of-track is when the car
moves out of the track. A successful navigation is when the car
does not move out of the track but completes navigating the
track. Finally, in the case of the RBF DAVE-II network, a safe
stop is when the rejection class triggers the car to safely stop.
In summary, the RBF DAVE-II is able to often safely reject
the physical attack and execute the stop action as compared
to DAVE-II.

(c) Comparison with other approaches: We have com-
pared the RBF DAVE-II with a reconstruction-based VAE.
The VAE network has 5 convolutional layers 24/36/48/48/64
with 5 x 5 filters and 3 x 3 filters followed by one fully
connected layer with 1164 neurons. A symmetric deconvo-
lutional decoder structure is used as a decoder. This network
was trained for 150 epochs using the same training images that
were used to train the RBF-DAVE II network. We used the
previously collected 1028 offline images for these evaluations.
Table II shows the precision, recall, and the F1-score of these
networks in detecting the physical attack. As seen, the RBF
DAVE-II performs slightly better in detecting the attacks and it
also has smaller false positives in detecting the clean images.

(a) Clean Image (b) Poisoned Image

Fig. 7: Examples of poisoned backdoor instances for the GTSB dataset.

B. Detecting Data Poison Attacks

1) Experimental Setup: The poisoning attack is performed
on the GTSB dataset [23] that has over 50,000 images of
traffic signs from 43 traffic sign classes. We adapt the popular
injected pattern-key attack where the attack is a targeted label
attack that attempts to cause a DNN to predict any road sign
as an 80 km/hr signboard (see Fig. 7b), whenever a backdoor
key similar to a post-it note is encoded in the image. To poison
the dataset we (1) randomly select np instances outside of the
80 km/h class, (2) add a yellow, post-it like note at a random
location in the image (see Fig. 7b), and (3) change the instance
label to that of the 80 km/h road sign. A poisoning attack is
successful if a model predicts non-poisoned images as their
ground truth and poisoned images as the modified label.

2) Competing Baselines: Two baseline networks are com-
pared for the proposed detection method. First is the ResNet20
[24] network which has 20 convolutional layers and 1 layer of
softmax activation functions. The other is the RBF ResNet20
network, which replaces the final fully-connected layer with an
RBF layer preceded by hyperbolic tangent function. We split
the GTSB dataset into a training set of 39209 images and
an evaluation set with 11430 clean images and 1200 backdoor
instances. The training set is poisoned while the evaluation set
is kept clean. The networks are trained on the training set for
150 epochs using the adam optimizer, with categorical cross-
entropy loss for the ResNet20 network, and SoftML loss for
the RBF ResNet20 network.

3) Results: (a) Robustness evaluation: We evaluate the
robustness of the baseline networks by adjusting the number of
poisoned samples (np) in the training data. We incrementally
increase the poisoned images in the training data and record
the poison attack success rates for both networks. As seen
in Fig. 8, the poisoning success rate of ResNet20 is greater
than 30% after only 5% of the class data has been poisoned,
and the success rate increases to 90% after 35% of the
data is poisoned. In comparison, RBF ResNet20 requires a
larger amount of the data to be poisoned for the attack to be
successful. The success rate is negligible after 35% of the class
data is poisoned, and it increases to 30% only after 53% of the
class data is poisoned. However, both the networks succumb to
the attack after 70% of the data is poisoned. Further, in Fig. 8-
b, we find that both ResNet20 and RBF ResNet20 achieve
similar overall accuracy on the test data. This eliminates the
possible argument that ResNet20 is simply learning the data
distribution better than RBF ResNet20 and is, therefore, more
likely to be successfully poisoned.

(b) Sanitizing poisoned dataset: Further, we evaluate

6

9.0 17.0 35.0 52.0 70.0
Train Data poisoned (%)

0

20

40

60

80

100

Po
iso

n
Su

cc
es

s R
at

e
(%

) ResNet20
RBF ResNet20

9.0 17.0 35.0 52.0 70.0
Test Data poisoned (%)

0

20

40

60

80

100

Po
iso

n
Su

cc
es

s R
at

e
(%

)

Fig. 8: The poison attack success rate for ResNet20 and RBF ResNet20 networks. (left) train data poisoned using 1200 backdoor key instances, and (right)
test data poisoned using the same 1200 instances. The RBF ResNet20 network only starts to fail only when > 35% of the training data gets poisoned.

0.0 0.2 0.4 0.6 0.8 1.0
FP Rate

0.00

0.25

0.50

0.75

1.00

TP
 R

at
e n=179 AUC=1.0

n=358 AUC=1.0
n=717 AUC=1.0
n=1075 AUC=1.0
n=1434 AUC=0.89

Fig. 9: The ROC curve representing the RBF ResNet20 network’s data
cleaning capability. The AUC is indicative of the effectiveness of the binary
classifier. The AUC increases as the network’s accuracy on the clean data
increases and as the data set is more sparsely poisoned.

RBF ResNet20 network’s capability to separate the clean and
poisoned data in the poisoned dataset. We believe the network
will be able to discriminate between clean and poisoned
instances by producing an ordering of the training data where
φyi(X

i
poison) > φyi(X

i
clean). As a result, we can introduce a

threshold β such that we label any training instance Xi with
ground truth yi as poisoned whenever φyi(X

i
poison) > β.

Fig. 9 shows the receiver operating characteristics (ROC)
curve to represent the RBF ResNet20 network’s data cleaning
capability. The area under the curve (AUC) provides an ag-
gregate measure of the effectiveness of a binary classification
(clean data vs. poison data) for various values of β. The
AUC is 1.0 until 43% of the dataset (np = 1075) has been
poisoned, and it slightly drops to 0.89 when 58% of the dataset
(np = 1434) has been poisoned. These results show the RBF
ResNet20 network can still succeed in rejecting poisoned data
despite the dataset being highly poisoned.

(c) Comparison with other approaches: We compared
the RBF ResNet20 network to the activation clustering (AC)
method [16] which clusters the penultimate layer’s activations
to separate poisoned and clean instances. To perform the AC
method we use the author’s suggestion of K-means (k=2)
and PCA to reduce the penultimate layer’s activations to
10 dimensions. For the RBF ResNet20 network, a rejection
threshold of β = 1.72 was used to modestly cover the tail end
of the distribution of φyi(X

i
poison).

Fig. 10 shows the results of adjusting np and comparing
the two cleaning methods for the poisoned GTSB dataset. In
the sparsely poisoned conditions, the RBF ResNet20 network
was able to achieve on average higher true positive rates and
lower false positive rates than the AC method. Even at lower
values of np where the poisoning success rate on the regular
classifiers still exceeds 90%, the AC method tends to predict

fewer true positives and a significant number of false positives
exceeding 15000. However, the RBF ResNet20 network (see
Fig. 10 (right)) has a higher true positive and lower false
positives (not exceeding 5000) for different values of np. The
results show that the RBF ResNet20 network is highly robust
to sparsely poisoned data and begins to slowly fail as the value
of np increases, whereas the AC method dramatically fails.

C. Resource Evaluation

The resource evaluations were performed on a desktop
with AMD Ryzen Threadripper 16-Core Processor, 4 NVIDIA
Titan Xp GPU’s, and 128 GiB memory. We compare two
approaches: (a) RBF DAVE-II network which performs both
discreet steering predictions and anomaly detection, and (b) the
NVIDIA DAVE-II regression network for continuous steering
predictions and a reconstruction based VAE for anomaly de-
tection. The structure of the VAE is discussed in Section V-A.

1) Execution Time: The DAVE-II network took an average
of 65.4 milliseconds for steering angle predictions and the
reconstruction-based VAE network took an average of 53
milliseconds for anomaly detection. In comparison, the RBF
DAVE-II network only took an average of 44 milliseconds for
both discreet steering predictions and anomaly detection. In
summary, the RBF DAVE-II network has a 62.8% reduction
in the execution time compared to the VAE. This reduction is
because of the reduced operations the RBF DAVE-II network
has to perform following the convolutional layers.

2) Memory Usage: The DAVE-II network utilized an av-
erage memory of 2.0 GB and the reconstruction-based VAE
network utilized an average memory of 3.6 GB. In comparison,
the RBF DAVE-II network only utilized an average memory
of 1.1 GB. The RBF DAVE-II network utilizes less memory
because of the fewer operations following the convolutional
layers, compared to the VAE network that has a bulky encoder-
decoder architecture, that requires higher computations.

VI. CONCLUSION AND FUTURE WORK

This paper evaluates the efficiency of deep-RBF networks
for detecting DNN related anomalies in CPS applications. We
propose the use of a single deep-RBF network to perform both
controller predictions and anomaly detection in CPS regression
tasks. However, the use of RBF functions limits the network’s
applicability only to classification tasks. So, we show the steps
on converting a CPS regression task (continuous steering pre-
dictions) to a classification task (discreet steering predictions)

7

Fig. 10: (left) AC method using K-means (nc = 2) and PCA (|D| = 10), (right) RBF ResNet20 network’s rejection capability with β = 1.72. The plots
show the capability of the two methods in correctly classifying the training samples as poisoned or clean. For this evaluation different percentages of the
training dataset is poisoned.

and then train a deep-RBF network for class prediction and
anomaly detection. To support our hypothesis, we evaluated
the deep-RBF networks for two different attacks on CPS
applications. First, for physical attacks on the DeepNNCar
platform, the trained deep-RBF network could detect the attack
with a precision of 96.4% and could prevent the car from
moving out of track for 10 out of 12 trials. Further, our
evaluations also show that the deep-RBF network is robust to
data poison attacks over the GTSB dataset, and the network’s
rejection class could be used for cleaning the poisoned dataset.

Future extensions of the deep-RBF networks include: (1)
extending the rejection class capability to different types of
OOD data (e.g. brightness, occlusion, etc.), (2) the use of
rejection capability for high level controller selection as in
our previous work [9], and (3) the use of rejection class
information along with the inductive conformal prediction
framework [25] to better address the dynamic nature of CPSs.

Acknowledgement: This work was supported by the
DARPA Assured Autonomy project and Air Force Research
Laboratory.

REFERENCES

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[2] F. Cai and X. Koutsoukos, “Real-time out-of-distribution detection
in learning-enabled cyber-physical systems,” in 2020 ACM/IEEE 11th
International Conference on Cyber-Physical Systems (ICCPS). IEEE,
2020, pp. 174–183.

[3] V. K. Sundar, S. Ramakrishna, Z. Rahiminasab, A. Easwaran, and
A. Dubey, “Out-of-distribution detection in multi-label datasets using
latent space of β-vae,” arXiv preprint arXiv:2003.08740, 2020.

[4] C. Hartsell, S. Ramakrishna, A. Dubey, D. Stojcsics, N. Mahadevan,
and G. Karsai, “Resonate: A runtime risk assessment framework for
autonomous systems,” arXiv preprint arXiv:2102.09419, 2021.

[5] A. Amini, W. Schwarting, G. Rosman, B. Araki, S. Karaman, and
D. Rus, “Variational autoencoder for end-to-end control of autonomous
driving with novelty detection and training de-biasing,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 568–575.

[6] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[7] P. H. Zadeh, R. Hosseini, and S. Sra, “Deep-rbf networks revisited:
Robust classification with rejection,” arXiv preprint arXiv:1812.03190,
2018.

[8] F. Crecchi, M. Melis, A. Sotgiu, D. Bacciu, and B. Biggio, “Fader: Fast
adversarial example rejection,” arXiv preprint arXiv:2010.09119, 2020.

[9] S. Ramakrishna, A. Dubey, M. P. Burruss, C. Hartsell, N. Mahadevan,
S. Nannapaneni, A. Laszka, and G. Karsai, “Augmenting learning
components for safety in resource constrained autonomous robots,” in

2019 IEEE 22nd International Symposium on Real-Time Distributed
Computing (ISORC). IEEE, 2019, pp. 108–117.

[10] S. Ramakrishna, Z. Rahiminasab, A. Easwaran, and A. Dubey, “Efficient
multi-class out-of-distribution reasoning for perception based networks:
Work-in-progress,” in 2020 International Conference on Embedded
Software (EMSOFT). IEEE, 2020, pp. 40–42.

[11] F. Cai, J. Li, and X. Koutsoukos, “Detecting adversarial examples in
learning-enabled cyber-physical systems using variational autoencoder
for regression,” in 2020 IEEE Security and Privacy Workshops (SPW).
IEEE, 2020, pp. 208–214.

[12] P. Ghosh, A. Losalka, and M. J. Black, “Resisting adversarial attacks
using gaussian mixture variational autoencoders,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.
541–548.

[13] M. Brückner and T. Scheffer, “Stackelberg games for adversarial predic-
tion problems,” in Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2011, pp. 547–
555.

[14] B. Biggio, I. Corona, G. Fumera, G. Giacinto, and F. Roli, “Bag-
ging classifiers for fighting poisoning attacks in adversarial classifica-
tion tasks,” in International workshop on multiple classifier systems.
Springer, 2011, pp. 350–359.

[15] J. Steinhardt, P. W. Koh, and P. Liang, “Certified defenses for data
poisoning attacks,” arXiv preprint arXiv:1706.03691, 2017.

[16] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee,
I. Molloy, and B. Srivastava, “Detecting backdoor attacks on deep neural
networks by activation clustering,” arXiv preprint arXiv:1811.03728,
2018.

[17] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[18] A. Kurakin, I. Goodfellow, S. Bengio, Y. Dong, F. Liao, M. Liang,
T. Pang, J. Zhu, X. Hu, C. Xie et al., “Adversarial attacks and defences
competition,” in The NIPS’17 Competition: Building Intelligent Systems.
Springer, 2018, pp. 195–231.

[19] A. Boloor, X. He, C. Gill, Y. Vorobeychik, and X. Zhang, “Simple
physical adversarial examples against end-to-end autonomous driving
models,” arXiv preprint arXiv:1903.05157, 2019.

[20] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[21] A. Boloor, K. Garimella, X. He, C. Gill, Y. Vorobeychik, and X. Zhang,
“Attacking vision-based perception in end-to-end autonomous driving
models,” arXiv preprint arXiv:1910.01907, 2019.

[22] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 427–436.

[23] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The German Traffic
Sign Recognition Benchmark: A multi-class classification competition,”
in IEEE International Joint Conference on Neural Networks, 2011, pp.
1453–1460.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[25] G. Shafer and V. Vovk, “A tutorial on conformal prediction,” Journal of
Machine Learning Research, vol. 9, no. Mar, pp. 371–421, 2008.

8

	I Introduction
	II Related Work
	III Background
	III-A Deep-RBF network
	III-A1 Training Loss Function
	III-A2 Interpreting deep-RBF network output

	III-B Problems

	IV Anomaly Detection Workflow
	IV-A Problem Transformation
	IV-B Deep-RBF design and training
	IV-C Anomaly Detection

	V Evaluation
	V-A Detecting Black Box Physical Attack
	V-A1 Experimental Setup
	V-A2 Competing Baselines
	V-A3 Results

	V-B Detecting Data Poison Attacks
	V-B1 Experimental Setup
	V-B2 Competing Baselines
	V-B3 Results

	V-C Resource Evaluation
	V-C1 Execution Time
	V-C2 Memory Usage

	VI Conclusion and Future Work
	References

