
Pr
e-

Pu
bl

ic
at

io
n

C
op

y
ReSonAte: A Runtime Risk Assessment Framework

for Autonomous Systems
Charles Hartsell§, Shreyas Ramakrishna§, Abhishek Dubey, Daniel Stojcsics,

Nagabhushan Mahadevan, and Gabor Karsai
Institute for Software Integrated Systems, Vanderbilt University

Abstract—Autonomous Cyber Physical Systems (CPSs) are
often required to handle uncertainties and self-manage the system
operation in response to problems and increasing risk in the
operating paradigm. This risk may arise due to distribution
shifts, environmental context, or failure of software or hardware
components. Traditional techniques for risk assessment focus on
design-time techniques such as hazard analysis, risk reduction,
and assurance cases among others. However, these static, design-
time techniques do not consider the dynamic contexts and failures
the systems face at runtime. We hypothesize that this requires
a dynamic assurance approach that computes the likelihood
of unsafe conditions or system failures considering the safety
requirements, assumptions made at design time, past failures in a
given operating context, and the likelihood of system component
failures. We introduce the ReSonAte dynamic risk estimation
framework for autonomous systems. ReSonAte reasons over Bow-
Tie Diagrams (BTDs) which capture information about hazard
propagation paths and control strategies. Our innovation is the
extension of the BTD formalism with attributes for modeling
the conditional relationships with the state of the system and
environment. We also describe a technique for estimating these
conditional relationships and equations for estimating risk based
on the state of the system and environment. To help with this
process, we provide a scenario modeling procedure that can
use the prior distributions of the scenes and threat conditions
to generate the data required for estimating the conditional
relationships. To improve scalability and reduce the amount of
data required, this process considers each control strategy in
isolation and composes several single-variate distributions into
one complete multi-variate distribution for the control strategy
in question. Lastly, we describe the effectiveness of our approach
using two separate autonomous system simulations: CARLA and
an unmanned underwater vehicle.

Index Terms—System Risk Management, Dynamic Risk, As-
surance Case, Hazard Analysis, Bow-Tie Diagram

I. INTRODUCTION

Autonomous Cyber Physical Systems (CPSs)1 are expected
to handle uncertainties and self-manage the system operation
in response to problems and increase in risk to system safety.
This risk may arise due to distribution shifts [1], environmental
context or failure of software or hardware components [2].
Safety Risk Management (SRM) [3] has been a well-known
approach used to assess the system’s operational risk. It
involves design-time activities such as hazard analysis for
identifying the system’s potential hazards, risk assessment
to identify the risk associated with the identified hazards,
and a system-level assurance case [4] to argue the system’s
safety. However, the design-time hazard analysis and risk

§These Authors have equally contributed
1CPS with learning enabled components (LEC)

assessment information it uses is inadequate in highly dynamic
situations at runtime. To better address the dynamic operating
nature of CPSs, dynamic assurance approaches such as runtime
certification [5], dynamic assurance cases [6], and modular
safety certificates [7] have been proposed. These approaches
extend the assurance case to include system monitors whose
values are used to update the reasoning strategy at runtime.
A prominent approach for using the runtime information has
been to design a discrete state space model for the system,
identity the risk associated with each possible state transition
action, then perform the action with the least risk [8].

The effectiveness of dynamic risk estimation has been
demonstrated in the avionics [9] and medical [10] domains, but
these techniques often encounter challenges with state space
explosion which may limit their applicability to relatively low-
complexity systems. Also, real-time CPSs often have strict
timing deadlines in the order of tens of milliseconds requiring
any dynamic risk assessment technique to be computationally
lightweight. Besides, the dynamic risk assessment technique
should also take into consideration the uncertainty introduced
by the Learning Enabled Components (LECs) because of Out-
Of-Distribution (OOD) data [11]. Assurance monitors [11],
[12] are a type of OOD detector often used to tackle the
OOD data problem. The output of these monitors should be
considered when computing the dynamic risk.

Recently, there is a growing interest in dynamic risk as-
sessment of autonomous CPS. For example, the authors in
[13] have used Dynamic Bayesian Networks to incorporate
the broader effect of spatio-temporal risk gathered from road
information on the system’s operational risk. To perform
dynamic risk assessment of a system with autonomous com-
ponents, this paper introduces the Runtime Safety Evaluation
in Autonomous Systems (ReSonAte) framework. ReSonAte
uses the design-time hazard analysis information to build
Bow-Tie Diagrams (BTDs) which describe potential hazards
to the system and how common events may escalate to
consequences due to those hazards. The risk posed by these
hazards can change dynamically since the frequency of events
and effectiveness of hazard controls may change based on the
state of the system and environment. To account for these
dynamic events at runtime, ReSonAte uses design-time BTD
models along with information about the system’s current
state derived from system monitors (e.g. anomaly detectors,
assurance monitors, etc.) and the operating environment (e.g.
weather, traffic, etc.) to estimate dynamic hazard rates. The
estimated hazard rate can be used for high-level decision

Pr
e-

Pu
bl

ic
at

io
n

C
op

y
making tasks at runtime, to support self-adaptation of CPSs.

The specific contributions of this paper are the follow-
ing. We present the ReSonAte framework and outline the
dynamic risk estimation technique which involves design-
time measurement of the conditional relationships between
hazard rates and the state of the system and environment.
These conditional relationships are then used at run-time along
with state observations from multiple sources to dynamically
estimate system risk. Further, we describe a process that uses
an extended BTD model for estimating the conditional rela-
tionships between the effectiveness of hazard control strategies
and the state of the system and environment. To improve
scalability and reduce the amount of data required, this process
considers each control strategy in isolation and composes
several single-variate distributions into one complete multi-
variate distribution for the control strategy in question. A key
contribution is our scenario specific language that enables data
collection by specifying prior distributions over threat condi-
tions and environmental conditions and initial conditions of the
vehicle. We implement ReSonAte for an Autonomous Vehicle
(AV) example in the CARLA simulator [14] and through
comprehensive simulations across 600 executions, we show
that there is a strong correlation between our risk estimates and
eventual vehicular collisions. The dynamic risk calculations on
average take only 0.3 milliseconds at runtime in addition to
the overhead introduced by the system monitors. Further, we
exhibit ReSonAte’s generalizability with preliminary results
from an Unmanned Underwater Vehicle (UUV) example.

II. RELATED WORK

System health management [15], [16] with model based
reasoning have been popularly used for self-adaptation of
traditional CPSs. As discussed in [17], a pre-requisite in these
approaches has been that the system has knowledge about
itself, its objectives, and its operating environments, including
the ability to estimate when the adaption should occur. One
way to do this is to estimate the operational risk to the system
at runtime. Estimating the runtime risk is more difficult in
autonomous systems with LECs due to the black box nature of
the learning components and their susceptibility to distribution
shifts and environmental changes.

Our hypothesis is that we can use BTDs derived from the
system information and static assurance cases and use them
to compose the anomaly and the threat likelihoods at runtime,
including the likelihood for the failure of LECs [1], [11], [12],
[18]. BTDs are graphical models that provide a mechanism
to learn the conditional relationships between threat events,
hazards, and the success probability of barriers. BTDs have
been proactively used for qualitative risk assessment at design-
time [19], [20], and has been recently combined with assurance
arguments for operational safety assurance [21], [22].

Although BTDs have been proactively used for risk as-
sessment, there are several limitations in using them for
quantitative risk computations, they are: (1) Static structure
- BTDs have mostly been used as a graphical visualization
tool for hazard analysis, and its static structure limits real-data

updating which is required for dynamic risk estimation [23],
(2) Reliance on domain experts - quantitative risk estimations
mostly rely on domain experts to compute the probabilities for
the BTD events such as threats, and barriers [24], (3) Data
uncertainty - introduced because of data non-availability or
insufficiency, and expert’s limited knowledge makes it difficult
to compute quality probability estimates [25].

Several approaches have been proposed to overcome these
limitations and make BTDs suitable for quantitative risk
assessment. Bayesian techniques are one widely used approach
that dynamically learns the BTD structure from design-time
data, and updates the conditional probabilities for its events
(e.g., threats, barriers) [26], [27]. Further, [28] transforms a
BTD into a Bayesian Network where each node of the BTD
is modelled as a Bayesian Node. The other approach uses
techniques such as fuzzy set and evidence theory to address
the data uncertainty problems [25], [29]. In this approach,
the expert’s knowledge is translated into numerical quantities
that are used in the BTDs. [30] extends BTDs with petri-nets
models and monte-carlo simulations to generate data.

Although prior approaches have made BTDs suitable for
quantitative risk estimation, the design-time hazard informa-
tion used for risk estimation is inadequate for CPSs. The main
focus of this work is to dynamically estimate risk by fusing
design-time information captured in the BTDs with run-time
information about the system and the environment. Addition-
ally, we concentrate on generating large-scale simulation data
for conditional probability estimation of the BTD events.

III. RESONATE FRAMEWORK

The goal of the ReSonAte framework is the dynamic
estimation of risk based on runtime observations about the
state of the system and environment. We define risk as a
product of the likelihood and severity of undesirable events,
or consequences. Fig. 1 outlines the ReSonAte workflow
which is divided into design-time and run-time steps. The
design-time steps include System Analysis, Hazard Analysis,
Assurance Case Construction, and BTD Modeling. Sections
III-A1 through III-B provide background information about
each of these well-studied techniques. However, our BTD
formalism described in Section III-B is distinct from existing
formalisms with additional model attributes and restrictions for
the ReSonAte framework. Sections III-C through III-E intro-
duce the risk calculation equations, the conditional probability
estimation process, and the dynamic assurance case evaluation
method of the ReSonAte framework respectively.

A. Background

1) System Analysis: System analysis involves the design-
time analysis of the system operation, system faults, the avail-
able runtime monitors, and the operating environment such as
weather (e.g. rain, snow, fog, etc.), traffic, etc. Thereafter, we
perform failure mode analysis to identify the possible com-
ponent faults and their potential impacts on the safety of the
system. Fault propagation paths can be described with the use
of an appropriate fault modeling language (e.g. Timed Failure

2

Pr
e-

Pu
bl

ic
at

io
n

C
op

y
System Analysis

- Design (software architecture)
- Safety Requirements
- Failure Modes & Effect Analysis

Hazards Analysis
- Identify Hazards, Threats,
Barriers, Consequences

Bow-Tie Modeling

Safety Assurance Case

ReSonAte
Risk

Computation

Dynamic Assurance
Case Evaluator

Decision Manager
- e.g., controller

selection

Sensor Observations
- Environment state
- System state

Runtime Monitoring
- Assurance monitors
- Anomaly detectors

Fault Diagnosis (e.g., TFPG)

Safety Goals,
Assurance claims,
strategy, context,
Hazards.

BTD with conditional
probabilities.

Hazard propagation

Dynamic risk
estimate

Monitor Alarms

Failure Mode
Hypotheses

Observed
State

monitor types
and

requirements.

Observed
State

Design Time Run Time

Fig. 1: Overview of the steps involved in ReSonAte. Steps performed at design-time/run-time are shown on the left/right.

Propagation Graph (TFPG) [31]), and run-time monitors for
fault identification can be designed as appropriate. Monitors
to detect faults in traditional components have been designed
in prior work [32], but monitors for LECs are often more
complex (e.g. assurance monitors [11]). Alarms raised by these
monitors at run-time can then be fed into an appropriate fault
diagnosis engine (e.g. the TFPG reasoning engine) to isolate
particular fault modes that may be present in the system.

2) Hazard Analysis: Hazard analysis involves the iden-
tification of events that may lead to hazardous conditions,
implementation of barriers to prevent loss of control over
hazard conditions or recovery control after a loss, and esti-
mation of the risk posed by the identified hazards. Guidelines
for performing hazard analysis are available in a variety
of domains including the ISO 26262 standard [33] for the
automotive domain and the FAA System Safety Handbook
[34] for the aerospace domain.

3) Assurance Case Construction: An assurance case [4]
is a structured argument supported by a body of evidence
which shows that system goals will be met in a defined
operating environment and is often documented using the Goal
Structuring Notation (GSN) [35]. Multiple authors have noted
the importance of having ”hazard analysis and risk reduction
arguments” within an assurance case [36], [37]. In this work,
we only concentrate on the hazard analysis argument of the
assurance case, and earlier works [6], [38] can be referred for
a more comprehensive dynamic assurance case.

B. Our Contributions: Bow-Tie Formalization & Extensions

Bow-Tie Diagrams are used in ReSonAte as the means of
describing hazard propagation paths and the control strategies
used to prevent that propagation. BTDs are intended for
describing linear propagation and do not have concepts for
capturing non-linear causality or complex interactions between
events. However, these linear models are sufficient for many
hazards commonly encountered by CPSs such as those demon-
strated for the example systems described in Section IV. To

perform dynamic risk estimation, the hazard models must also
contain information about the expected rate of threat events
and the success probability of barriers, both of which may
be conditional on the current conditions. In this section, we
present a BTD formalization which includes this conditional
information not captured in existing BTD interpretations. Un-
der our formalism, each node has an associated function that is
conditional on the state of the system and environment. Before
constructing a BTD, we assume the following sets have been
identified: all potential hazard classes H , all events E relevant
for hazard analysis, barriers B which may either prevent a
loss of control or recover after such a loss has occurred,
possible system failure modes FM , and event severity classes
SV . We also assume a function fa which maps each severity
class to the maximum acceptable rate of occurrence threshold
fa : SV → R has been defined.

For risk calculation, we define the state of the system and
the environment as S = (F, e,m) where:

• F is a set of failure modes currently present in the system.
F ⊆ FM

• e is an n-tuple describing the current environmental
conditions where n is the number of environmental
parameters that are relevant for risk calculations and each
parameter may be continuous or discrete valued.

• m is a k-tuple containing the outputs of runtime monitors
in the system where k is the number of such monitors and
each monitor may be continuous or discrete valued.

When modeling the environment, the system developer
should choose an appropriate level of abstraction based on
which environmental parameters are relevant for risk calcula-
tion. More environmental parameters may increase the fidelity
of the model but also increases the required effort when
determining conditional probabilities for events and barriers.
It is not required to consider every environmental parameter
for all events and barriers. Instead, each event or barrier
may be conditional upon a smaller subset of environmental

3

Pr
e-

Pu
bl

ic
at

io
n

C
op

y
Threat

T1
Pedestrians

crossing the road

Vehicle in the
path of travel

Preventive Barrier
B1

Controller LEC trained
on diverse datasets

including pedestrians

Controller LEC trained
on diverse datasets
including vehicles

in path

Emergency braking
system overrides
the control LEC

Collision with
roadway

obstruction

Top Event
TOP

Preventive Barrier
B2Threat

T2

Recovery Barrier
B3

Consequence
C1

Approaching a roadway
obstruction with

unsafe speed

Roadway Obstruction

Hazard
H1

(B3,s) =

0.0

0.833

0.700

0.056

radar_failure s.F

s.e.precip 0.2

0.2 < s.e.precip 0.4

s.e.precip > 0.8

0.714 0.4 < s.e.precip 0.6
0.6 < s.e.precip 0.80.042

Center Cam blur 0.351 0.417

Left Cam Blur 0.378 0.409

Right Cam Blur 0.270 0.443

Center Cam Occlude 0.342 0.421

Left Cam Occlude 0.395 0.404

Right Cam Occlude 0.395 0.404

Fig. 2: Example Bow-Tie Diagram for autonomous vehicle example ”Roadway Obstruction” hazard created using the ALC Toolchain. Each block includes a
brief description and the type of each node is denoted at the top of the block. The equations depicted are described in Section III-B.

parameters that have the largest impact on that particular event
or barrier. Formally, we define a Bow-Tie Diagram as a tuple
(N,C, ft, h, fd, fb, fe, fs) where:
• N is a set of nodes where each node represents either an

event e ∈ E or a barrier b ∈ B.
• C represents a set of directed connections such that C ⊆
N ×N . For a given connection c ∈ C, src(c) and dst(c)
represent the source and destination of c respectively.

• The tuple (N,C) is a Directed Acyclic Graph (DAG)
representing the temporal ordering of events as well as
the barriers which may break this ordering and prevent
further propagation of events.

• The function ft gives the type of each node. ft : N →
{event, barrier}. Using this function, we let Ne = {n ∈
N | ft(n) = event} and Nb = {n ∈ N | ft(n) =
barrier}. This gives the following properties: Ne ⊆ E,
Nb ⊆ B, N = Ne ∪Nb, and Ne ∩Nb = ∅.

• h ∈ H is the hazard class associated with the BTD.
• The function fd gives a textual description of each node.
fd : N → string

• fb is a probability function conditional on the state of the
system and environment defined for each barrier node.
This function represents the probability that the barrier
will successfully prevent further event propagation. fb :
Nb × S → [0, 1].

• fe is a function conditional on the state of the system
and environment defined for each event node. It gives
the expected frequency of the event over a fixed period.
The values of this function must be specified for threat
events (i.e. root events with no preceding input events),
but can be calculated for subsequent events in the diagram
as discussed in Section III-C. fe : Ne × S → [0, inf).

• A function fs which maps each event to the appropriate
severity class. fs : NE → SV

BTDs are often constructed in a chained manner where a
consequence event in one section of the BTD may serve as a
threat or top event in a subsequent section of the same BTD.
However, such a chained BTD can be broken into multiple,
single-scope BTDs where each event has one unique type
(i.e. threat, top event, or consequence). As a simplification,

ReSonAte operates only on these single-scope BTDs which
satisfy the additional restrictions listed below. Note that the
symbol ⇒ is used to denote precedence in the graph. That is,
given two nodes a, b ∈ N , then a ⇒ b states that a precedes
b in the BTD, but this does not necessitate a direct edge such
that a→ b. Instead, there may be any number of intermediate
nodes ci ∈ N such that a→ c1 → c2 → ...→ cn → b.
• Exactly one event must be designated as the top event,

denoted etop.
• There must be at least one threat. i.e. ∃ t ∈ Ne | t ⇒
etop ∧ @ n ∈ N | n⇒ t. We denote the set of all threat
events as Nt.

• There must be at least one consequence. i.e. ∃ c ∈
Ne | etop ⇒ c ∧ @ n ∈ N | c ⇒ n. We denote the
set of all consequence events as Nc.

• All events must be a threat, a top event, or a consequence.
i.e. No intermediate events.

• All barriers must lie between a threat and the top event,
or between the top event and a consequence. i.e. ∀ b ∈ Nb
either t⇒ b⇒ etop or etop ⇒ b⇒ c

• No branching or joining of the graph is allowed, except
for at the top event.

For the example BTD shown in Fig. 2, the type of each
event is denoted on the top of the block and we can define the
sets Ne = {T1, T2, TOP,C1} and Nb = {B1, B2, B3}. For
each event e ∈ Ne, the associated severity class is given by the
function fs(e) which is shown under each event block. Each
of the threats, T1 and T2, have been assigned to the ”None”
severity class because these events are considered to be
common occurrences that do not result in any safety violation
by themselves. The top event TOP has been assigned to the
”Minor” severity class since this event can still be mitigated
before a safety violation occurs but mitigation requires the
Automatic Emergency Braking System (AEBS) to override
the primary LEC controller. Finally, the consequence C1 has
been assigned to the ”Catastrophic” severity class since this
event is a safety violation and may result in significant damage
to the system or environment.

The conditional functions fe and fb are shown near their re-
spective nodes in Fig. 2. The functions fe(T1, s) and fe(T2, s)

4

Pr
e-

Pu
bl

ic
at

io
n

C
op

y
give the expected frequency of threats T1 and T2 in units of
expected number of occurrences per minute, and their values
were measured for our simulator configuration described in
Section IV. The probability function for barriers B1 and B2,
fb(x = (B1,B2), s), shows how these barriers are dependent on
both the continuous-valued output from the assurance monitor
and on the binary state of other monitors. A sigmoid function,
P (x|s.m.LEC), is used to capture the conditional relationship
with the assurance monitor output. Finally, fb(B3, s) shows
how barrier B3 is less likely to succeed as the precipitation
increases and will not function in the case of a radar failure.
Section III-C explains the generic process for conditional
probability estimation and Section IV-A4 provides more detail
on the functions in this BTD.

C. Run-time Risk Computation

Each BTD includes functions describing the conditional
frequency for all threat events and the conditional probability
of success for all barrier nodes. However, the likelihood of
each consequence is necessary to estimate the overall level of
risk for the system. These probabilities can be calculated by
the propagation of the initial threat rates through the BTD.
When a particular event occurs, barrier nodes reduce the
probability that the event will continue to propagate through
the BTD based on the following equation:

R(e2|s) = R(e1|s)P (b1 ∧ b2 ∧ ... ∧ bn|s)
assume a ⊥ b ∀ a, b ∈ {b1, b2, ..., bn} | a 6= b

R(e2|s) = R(e1|s)[Πn
i=1P (bi|s)] (1)

where e1, e2 ∈ Ne and bi ∈ Nb such that e1 → b1 → b2 →
... → bn → e2. R(ei|s) represents the frequency of event ei
given state s. Eq. (1) makes the assumption that no barriers
share any common failure modes and that the effectiveness of
each barrier is independent from the outcome of other barriers.
Similarly, P (bi|s) represents the probability that barrier bi will
fail to prevent event propagation given state s, i.e. P (bi|s) =
1 − P (bi|s). Letting S represent the set of all states we are
concerned with, then we can calculate the overall frequency
of e2 as R(e2) = Σs∈S [R(e2|s)P (s)] where P (s) is the
probability of each particular state s ∈ S. As discussed in the
BTD formalization in Section III-B, no joining or splitting of
paths is allowed in a BTD with the exception of the top event
etop. We treat the top event as a summation operation for all
incoming edges, i.e. any threat event may independently cause
a top event if the associated barriers are unsuccessful. All
outgoing edges from the top event are treated as independent
causal chains, i.e. any potential consequence may occur from
a top event, independent of other consequences in the BTD.
The probability for the top event can be calculated as:

R(ttop) = Σs∈S [R(t|s)P (s)[Πn
i=1P (bi|s)]]

R(etop) = Σt∈Nt
R(ttop) (2)

where R(etop) is the frequency for the top event and P (ttop)
represents the contribution of each threat t to this rate after
passing through any intermediate prevention barriers bi ∈ Nb

such that ti → b1 → b2 → ... → bn → etop. Finally, the
probability of each consequence can be calculated with:

R(ci) = R(etop)Σs∈S [P (s)[Πn
i=1P (bi|s)]] (3)

where R(ci) is the frequency of consequence ci ∈ Nc
after passing through any recovery barriers bi ∈ Nb such that
etop → b1 → b2 → ...→ bn → ci.

If the state is not known uniquely, then each potential state
s ∈ S must be enumerated and a probability function P (s)
must be assigned such that Σs∈SP (s) = 1. At design-time
when only the expected distributions of the state variables are
known, this state probability function is typically calculated
as a product of the probability mass functions (or probability
density functions for continuous variables) of each individual
state variable. Recall that for ReSonAte the state S is restricted
to only those variables which have a conditional impact
on the functions contained in the BTDs and thus not all
state variables describing the system must be considered in
this calculation. When the system is deployed at run-time,
observations about the current state can be used to refine
the set of prior probabilities P (s) and dynamically calculate
current risk values. The equations outlined here use a discrete
treatment of probability, but continuous distributions can be
used as well where summation operations are replaced by an
appropriate integration. If the state can be identified uniquely
to a particular state s0 ∈ S, then we can assign P (s0) = 1 and
simplify the risk equations. For example, we could calculate
the rate of occurrence for events TOP and C1 which are part
of the BTD B shown in Fig. 2 using the following equations:

R(TOP |s0) = B.fe(T1, s0) ∗ (1−B.fb(B1, s0))

+B.fe(T2, s0) ∗ (1−B.fb(B2, s0))

R(C1|s0) = R(TOP |s0) ∗ [1−B.fb(B3, s0)] (4)

D. Estimating Conditional Relationships

1) Conditional Relationships: In ReSonAte, both the rate
of occurrence of events and the effectiveness of barriers may
be conditionally dependent on the state including system
failure modes, runtime monitor values, and environmental
conditions. For each of these categories, it is necessary to
identify the factors which should be examined for their impact
on this conditional relationship. A failure analysis should be
performed using an appropriate failure modeling language
as discussed in Section III-A1. Similarly, the environmental
parameters relevant to the system must be identified and
the operating environment defined in terms of bounds and
expected distributions of these parameters. We assume the
environmental conditions are known uniquely and provided
to ReSonAte. Monitor values that may impact the conditional
relationships should also be identified.

For some nodes in a BTD it may be possible to analytically
derive the appropriate conditional relationship with each state
variable, but often this relationship must be inferred from data.
In this section, we consider a generic threat to the top event
chain with a single barrier described as t → b → etop. The
contribution to the rate of the top event etop from this singular

5

Pr
e-

Pu
bl

ic
at

io
n

C
op

y
threat t with a single barrier b is shown in Eq. (5). Normally,
multiple threats can lead to the top event and the contribution
of all threats must be considered as described in Eq. (2).
However, if all other threat conditions can be eliminated, then
the top event may only occur as a result of threat t. In this case,
the probability of success for barrier b can be calculated as a
function of the ratio of frequencies between the top event and
threat t shown in Eq. (6). This approach can also be used for
threats with multiple associated barriers by considering each
barrier in isolation since individual barriers are assumed to be
independent in Eq. (1).

R(ettop|s) = R(t|s) ∗ (1− P (b|s)) (5)

R(tj |s) = 0 ∀ tj ∈ Nt | tj 6= t→ R(etop|s) = R(ettop|s)
P (b|s) = 1− [R(etop|s)/R(t|s)] (6)

We isolate individual threats in simulation using a cus-
tom Scenario Description Language (SDL), described in Sec-
tion III-D2, to generate scenarios where only the one threat
of interest is allowed to occur and all other possible threats
are eliminated. Each time the threat t is encountered, the top
event etop may either occur or not occur. If the top event does
not occur, then the associated barrier b was successful - i.e.
prevented hazard propagation along this path. Otherwise, the
barrier was unsuccessful. Since the occurrence of a threat is a
discrete event that results in a boolean outcome (i.e. top event
does/does not occur), the barrier effectiveness can be modeled
as a conditional Binomial distribution where the probability of
barrier success is dependent on the ratio of top event frequency
to threat frequency as shown in Eq. (6).

For each barrier b in the BTD, any state variables which are
likely to impact the conditional frequency or probability of that
node should be identified, and we denote this reduced set of
state variables as Sb. For discrete state variables (e.g., presence
or absence of a particular fault condition, urban/rural/suburban
environment, etc.), this ratio can be estimated using Laplace’s
rule of succession [39] as shown in Eq. (7) where nsi=a is the
number of scenes where the state variable si had the desired
value a and ksi=a is the number of such scenes where the top
event also occurred. This equation can be applied for each of
the possible values of the state variable si to estimate the dis-
crete probability distribution P (b|si), and the process can then
be repeated for each relevant state variable si ∈ Sc. Eq. (8) can
be used to fuse the estimated distributions of each individual
state variable into one multivariate distribution P (b|s). Similar
to Naive Bayes classifiers, this equation assumes each of the
state variables si are mutually independent conditional on the
success of barrier b. If a stronger assumption is used that
the state variables in Sb are mutually independent, then the
term Πm

j=0[P (sj)]P (s0s1...sm)−1 reduces to 1 as was the
case for all of the probabilities estimated in our examples. For
each continuous state variable sj (e.g. output of an assurance
monitor), maximum likelihood estimation was used in place
of Eq. (7) to estimate P (b|sj). Similarly, Eq. (8) can be
revised for continuous values by replacing the probability mass
functions P (sj) with probability density functions p(sj).

scene sample {
type string
type int
entity town_description{

id:string
map:string }

entity weather_description{
cloudiness: uniform
precipitation: uniform
precipitation_deposits: uniform }

entity uniform{
low: int
high: int }

}

Fig. 3: This listing shows a fragment of a CARLA scene description that was
generated using our SDL written in textX meta language.

P (b|si = a) = 1− ksi=a + 1

nsi=a + 2
(7)

P (b|s) =
P (s0, s1, ..., sm|b)P (b)

P (s0, s1, ..., sm)

assume sj ⊥ sk | b ∀ sj , sk ∈ Sb | sj 6= sk

P (b|s0, s1, ..., sm) =
P (b)Πm

j=0P (sj |b)
P (s0, s1, ..., sm)

P (b|s0, s1, ..., sm) =
Πm
j=0P (b|sj)P (sj)

P (b)m−1P (s0s1...sm)
(8)

While the conditional probability estimation process is
outlined here for prevention barriers, it may be modified for
recovery barriers by replacing occurrences of any threats t with
the top event etop and replacing occurrences of the top event
with each consequence of interest.

2) Scenario Description Language: Description and gen-
eration of scenarios that cover the full range of expected
operating environments is an important aspect for the design of
CPS. Several domain-specific SDLs such as Scenic [40] and
MSDL [41] with probabilistic scene generation capabilities
are available. While these languages have powerful scene
generation capabilities, they are targeted specifically at the
automotive domain. We have developed a simplified SDL
using the textX [42] meta language to generate varied scenes
for multiple domains including our AV and UUV systems.

A fragment of the scene description for the CARLA AV
example is shown in Fig. 3. A scene S = {e1,e2,...,ei} is
described as a collection of entities (or set points), with
each entity representing information either about the ego
vehicle (e.g., type, route, etc.), or the operating environ-
ment (e.g., weather, obstacle). Further, each of these en-
tities has parameters whose value can be sampled using
techniques such as Markov chain Monte Carlo to generate
different scenes in the simulation space. The larger the num-
ber of sampling, the wider is the simulation space cover-
age. For the AV example, our scene was defined as S =
{town description, weather description, av route}. While the
parameters of town description and av route remained fixed,
the parameters of weather description such as cloud, precipita-
tion, and precipitation deposits were randomly sampled to take
a value in [0,100]. We generated 46 different CARLA scenes
by randomly sampling the weather parameters, a few of which
were used for estimating the conditional relationships.

6

Pr
e-

Pu
bl

ic
at

io
n

C
op

y
Currently we perform unbiased sampling to generate each

scenario, then use the resulting unbiased dataset for the
probability calculations described in Section III-D. This ap-
proach proved sufficient for the example systems described in
Section IV. However, these systems are prototypes where con-
sequences occur relatively often. For more refined production
systems, consequences do not typically occur under nominal
operation but instead are often the result of rare combinations
of adverse operating conditions and/or system failure modes.
This is an example of the long tails problem where the
probability of observing this undesired system behavior is low
if unbiased random sampling is used. In future work, guided
sampling of the state space (e.g. [43]) can be used to better
observe these rare events and perform conditional probability
estimation with the resulting biased dataset.

E. Dynamic Assurance Case Evaluation

Safety Risk Management [3] is a common technique used
in the system safety assurance process which involves iden-
tification of potential hazards, analysis of the risks posed by
those hazards, and reduction of these risks to acceptable levels.
The amount of risk remaining after risk control strategies
have been implemented is known as the residual risk. An
appropriate assurance argument pattern, such as the As Low
As Reasonably Practicable (ALARP) pattern outlined by Kelly
[35], is often used to document the means used for risk
reduction and show that the estimated levels of residual risk
are within tolerable bounds. With traditional SRM techniques,
residual risk estimates are static results of design-time analysis
techniques. However, using the risk estimated by ReSonAte
the residual risk for each hazard can be updated dynamically
at run-time and the associated goal in the assurance argument
can be invalidated if the risk exceeds a predefined threshold.
When this risk threshold is violated, contingency plans can
be enacted to place the system in a safe state. For example,
stopping the AV or surfacing the UUV are simple contingency
actions used for the example systems described in Section IV.
The risk scores produced by ReSonAte may also be used in
assurance case adaptation techniques such as Dynamic Safety
Cases [6] or ENTRUST [44].

IV. EVALUATION

We evaluate ReSonAte using an AV example in the CARLA
simulator [14] and show its generalizability with preliminary
results from an UUV example [45]. The experiments2 in
this section were performed on a desktop with AMD Ryzen
Threadripper 16-Core Processor, 4 NVIDIA Titan Xp GPU’s
and 128 GiB memory.

A. Autonomous Ground Vehicle

1) System Overview: Our first example system is an au-
tonomous car which must safely navigate through an urban
environment while avoiding collisions with pedestrians and
other vehicles in a variety of environmental and component

2source code to replicate the CARLA AV experiments can be found at:
https://github.com/scope-lab-vu/Resonate

(a) Screenshot from CARLA simulator. (b) Top-down view of BlueROV2.

Fig. 4: Screenshots from each autonomous system simulation. Fig. 4a shows
an image from the forward-looking camera of the AV as it navigates through
the city. Fig. 4b shows a top-down view of the UUV where the vehicle
(trajectory shown as a green line) is inspecting a pipeline (thick blue line)
until an obstacle (grey box) is detected by the forward-looking sonar and the
vehicle performs an avoidance maneuver.

CAMERA

Motion
Estimator

SPEEDO-
METER

Navigation

speed

Images

Heading

Waypoints

Lateral
PID

Speed
Error

Steer

Throttle

Brake

RADAR
AEBS

GPS

IMU

depth

CAMERA

CARLA MAP

Angular
error

Brake AlarmRADAR

Longi-
tudinal

PID

Fig. 5: A block diagram of our AV example in CARLA simulation.

failure conditions. The architecture of our AV, shown in Fig. 5,
relies on a total of 9 sensors including two forward-looking
radars, three forward-looking cameras, a Global Positioning
System (GPS) receiver, an Inertial Measurement Unit (IMU),
and a speedometer. The ”Navigation” LEC, adapted from pre-
vious work [46], produces waypoints for the desired position
and velocity of the vehicle at a sub-meter granularity using
a neural network for image processing along with higher-
level information about the desired route provided by a map.
These waypoints are passed to the ”Motion Estimator” which
computes throttle and steering angle error between the current
and desired waypoints. The Motion Estimator also serves
as a supervisory controller which will override the primary
Navigation component if an alarm is sent by the AEBS
safeguard component. This AEBS component will raise an
alarm when the vehicle safe stopping distance, estimated based
on the current vehicle speed, exceeds the distance returned by
the radars indicating that the AV is approaching an object at
an unsafe speed. Finally, the output of the Motion Estimator
is sent to two PID controllers which generate appropriate
steering, throttle, and brake control signals.

2) System Analysis: We start with the analysis of the AV
system and its operating environment (e.g., weather, traffic,
etc). As the AV primarily uses a perception LEC, parameters
such as weather conditions (e.g., cloud spread, precipitation
level, and precipitation deposit level), high brightness, and
camera related faults such as blur and occlusion influenced
the control actions generated by the LEC controller. To detect
the camera faults and adverse operating conditions, we have
designed several monitors. Each of the three cameras is
equipped with OpenCV based blur and occlusion detectors to
detect image distortions. The blur detector uses the variance

7

https://github.com/scope-lab-vu/Resonate

Pr
e-

Pu
bl

ic
at

io
n

C
op

y
of the laplacian [47] to quantify the level of blur in the
image where a high variance indicates that the image is not
blurred, while a low value (<30) indicates the image is blurred.
The occlusion detector is designed to detect continuous black
pixels in the images, with the hypothesis that an occluded
image will have a higher percentage of connected black pixels.
In this work, a large value (>15%) of connected black pixels
indicated an occlusion. The blur detector has an F1-score of
99% and the blur detector has an F1-score of 97% in detecting
the respective anomalies.

Additionally, we leverage our previous work [11] to design a
reconstruction based β-VAE assurance monitor for identifying
changes in the operating scenes such as high brightness. The
β-VAE network has four convolutional layers 32/64/128/256
with (5x5) filters and (2x2) max-pooling followed by four
fully connected layers with 2048, 1000, and 250 neurons.
A symmetric deconvolutional decoder structure is used as a
decoder, and the network uses hyperparameters of β=1.2 and
a latent space of size=100. This network is trained for 150
epochs on 6000 images from CARLA scenes of both clear
and rainy scenarios. The reconstruction mean square error of
the β-VAE is used with Inductive Conformal Prediction [48]
and power martingale [49] to compute a martingale value.
The assurance monitor has an F1 score of 98% in detecting
operating scenes with high brightness. Further, TFPG models
for the identified camera faults were constructed, but the TFPG
reasoning engine was not used since the available monitors
were sufficient to uniquely isolate fault conditions without any
additional diagnostic procedures.

3) Hazard Analysis and BTD Modeling: For our AV ex-
ample, we consider a single hazard of a potential collision
with roadway obstructions. The potential threats for this hazard
were identified to be pedestrians crossing the road (T1), and
other vehicles in the AV’s path of travel (T2). The top event
was defined as a condition where the AV is approaching a
roadway obstruction with an unsafe speed. The primary LEC
is trained to safely navigate in the presence of either of these
threats and served as the first hazard control strategy for
both threat conditions, denoted by prevention barriers B1 and
B2. Finally, the AEBS served as a secondary hazard control
strategy denoted by the recovery barrier B3. The BTD shown
in Fig. 2 was constructed based on these identified events and
control strategies. For full-scale systems, the BTD construction
process will usually result in the identification of a large
number of events and barriers modeled across many BTDs.
For our example, we have restricted our analysis to these few
events and barriers contained in a single BTD.

4) Conditional Relationships: Here we consider the barrier
node B2 in Fig. 2 as an example for the probability calculation
technique described in Section III-D. Barrier B2 is part of the
event chain T2 → B2 → TOP and describes the primary
control system’s ability to recognize when it is approaching
a slow-moving or stopped vehicle in our lane of travel (T2)
too quickly and slow down before control of the roadway ob-
struction hazard (H1) is lost. To isolate barrier B2, simulation
scenes were generated using our SDL where T2 was the only

threat condition present but all other system and environmental
parameters were free to vary. It is important for these scenes to
cover the range of expected system states and environmental
conditions since the resulting dataset is used to estimate the
conditional probability of success for barrier B2. A total of 300
simulation scenarios were used for estimating the probability
of barrier B2. As a convenience for our example, the threat
(T2) was set to occur once during each scene, regardless of
other state parameters, which allows the denominator of this
ratio to be set as R(T2|s) = 1 occurrence per scene.

As perception LEC is the primary controller, the success
rate of barriers B1 and B2 will be dependent on the image
quality. The image quality will in turn be dependent on image
blurriness, occlusion, and environmental conditions. While the
level of blur and occlusion for each camera is a configurable
simulation parameter, our example system is not provided this
information and instead relies on blur and occlusion detectors
for each of the three cameras as discussed in Section IV-A2.
Each detector provides a boolean output indicating if the level
of blur or occlusion exceeds a fixed threshold. The primary
LEC is also susceptible to OOD data, and an assurance
monitor was trained for this LEC to detect such conditions.

This results in barrier B2 being dependent on a total of 7
state-variables described as the set SB2. For the 6 boolean
variables, Laplace’s rule of succession shown in Eq. (7) was
applied to the simulation dataset resulting in probability table
in the lower-right section of Fig. 2. A sigmoid function
was chosen to model the conditional relationship with the
continuous assurance monitor output. Maximum likelihood
estimation was used to produce the function P (x|s.m.LEC)
shown in Fig. 2 where s.m.LEC represents the output of the
LEC assurance monitor. Each of these single variable functions
was combined into the multivariate conditional probability
distribution fb(B2, s) using Eq. (8). Note that the LEC was
observed to be similarly effective in identifying pedestrians
and vehicles, and a simplifying assumption was made to use
the same conditional probability function for both barriers B1
and B2 given by function fb(x = (B1,B2), s) in Fig. 2.

The AEBS described by barrier B3 is independent of the
camera images and relies on the forward looking radar. The
level of noise in our simulated radar sensor increased with
increasing precipitation levels, indicating that the effectiveness
of barrier B3 would likely decrease as precipitation increased.
Also, failure of the radar sensor may occur on a random basis
which reduces the effectiveness of the AEBS to zero. A similar
conditional estimation process as used for B2 was applied here
to calculate the function fb(B3, s) shown in Fig. 2.

5) Results: To validate the ReSonAte framework, the
AV was tasked to navigate 46 different validation scenes
that were generated using our SDL. In these scenes, the
weather description parameters of cloud (c), precipitation (p),
and precipitation deposits (d) were varied in the range [0,100].
Other adversities were synthetically introduced using OpenCV
including increased image brightness, camera occlusion (15%-
30% black pixels), and camera blur (using 10x10 Gaussian fil-
ters). During each simulation, the ReSonAte’s risk calculations

8

Pr
e-

Pu
bl

ic
at

io
n

C
op

y

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

Time(mins)

Es
tim

at
ed

 L
ik

el
ih

oo
d

of
 C

ol
lis

io
n

fault mode 12
Collisions

Estimated Collision Rate
Estimated Likelihood of Collision

Fig. 6: ReSonAte estimated collision rate and likelihood of collision for 2
validation scenes. (Top) Scene1 - nominal scene with good weather and an
intermittent occlusion fault for left and center cameras. (Bottom) Scene2 -
initially nominal scene until 27 seconds when image brightness is increased.
A collision occurs at 38 seconds denoted by the vertical dotted line.

S1 S2 S3 S4 S5 S6
Carla Scenes

0.0

0.5

1.0

1.5

2.0

2.5

Co
llis

io
ns

0.38 0.36

0.84 0.88
1.15

1.96

0.42 0.5 0.62 0.75
1.05

1.67

 Estimated Average Collision Rate
Observed collisions

Fig. 7: ReSonAte estimated average collision rate vs. observed collisions
compared across 6 validation scenes. The results are averaged across 20
simulation runs for each scene. Each subsequent scene represents increasingly
adverse weather and component failure conditions.

continuously estimate the hazard (or collision) rate h(t) based
on changing environmental conditions, presence of faults, and
outputs from the runtime monitors. The frequency of the risk
estimation can be selected either based on the vehicle’s speed,
environmental changes, or available compute resources. In our
experiments, we estimate the risk every inference cycle.

Fig. 6 shows the estimated collision rate and the likelihood
of collision as the AV navigates 2 validation scenes. The
occurrence of a collision can be described as a random variable
following a Poisson distribution where the estimated collision
rate is the expected value λ. The likelihood of collision can
then be computed as (1 − e−λ·t), where λ is the estimated
collision rate and t is the operation time which is fixed to 1
minute in our experiments.

Fig. 7 shows the estimated average collision rate plotted
against the observed collisions for 6 validation scenes de-
scribed in the figure caption. The estimated average collision

rate is calculated as
∫ T2
T1

h(t) dt

T2−T1
, where, h(t) is the estimated

collision rate, T1 = 0 and T2 = 1 minute for our simulations. A
moving average is used to smooth the estimated collision rate
and a window size of 20 was selected to balance the desired
smoothing against the delay incurred by the moving average.
An overall trend in the plot shows a strong correlation between
the actual and the estimated collisions. Also, a visible trend
is that the collision rate changes with the weather patterns,
increasing for adverse weather conditions (S5-S6). However,
the estimated risk tends to slightly overestimate when the

1 2 3
Estimated Average Collision Rate

0

1

2

3

4

5

6

Ob
se

rv
ed

 C
ol

lis
io

n

n = 608
Observed vs. Estimated Collisions

(a) Validation data scatter plot.

0 1 2 3 4
Estimated Average Collision Rate

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ob
se

rv
ed

 C
ol

lis
io

ns

0.520 * x + 0.283

0.848 * x + 0.159

Obs. vs. Est. Collisions (Binned)

(b) Binned validation data.

Fig. 8: Results from validation scenes for the ReSonAte framework. Each
data point shown in Fig. 8a represents the outcome of one simulated scene
with the actual number of collisions observed plotted against the estimated
average collision rate. These same data points have been divided into bins
and averaged in Fig. 8b, along with two least-squares fit trend lines.

collision rate is greater than 1.0.
Further, each of the 608 data points shown in Fig. 8a

represents the outcome of one simulated scene with the actual
number of collisions plotted against the average collision rate
estimated by ReSonAte. Since the occurrence of a collision
is a probabilistic event, there is significant variation in the
actual number of collisions observed in each scene. Using our
dynamic rate calculation approach, the rate parameter λ of the
Poisson distribution changes for each scene as shown on the
x-axis of Fig. 8a. Maximum likelihood analysis was used to
compare our dynamic approach against a static, design-time
collision rate estimate where λ is fixed for all scenes. The
observed average collision rate across all scenes was found to
be 0.829 collisions per minute. Using this static λ value gave
a log likelihood of -740.7 while the dynamically updated λ
resulted in a log likelihood of -709.8 for a likelihood ratio of
30.9 in favor of our dynamic approach. Note that the static
collision rate used here is a posterior estimate calculated from
the true number of collisions observed. Any static risk estimate
made without this post facto knowledge would result in a
lower likelihood value and further increase the gap between
the dynamic and static approaches.

To better show the correlation between estimated and actual
collisions, the same data points have been divided into bins
and averaged in Fig. 8b along with two least-squares fit trend
lines. The dashed green trend line shows a linear fit to the
complete data set while the dotted red line shows a linear fit
to only those data points where the average estimated collision
rate was less than or equal to 1.0. Both trend lines show
a strong positive correlation between the estimated collision
rate and the number of observed collisions, but the dotted red
line more closely resembles the desired 1-to-1 correspondence
between estimated and actual collisions (i.e. slope of 1). These
results indicate that our dynamic risk calculation tends to over-
estimate when the estimated collision rate is greater than 1.0.

Table I shows the resource requirements and execution times
for system with different configurations. As seen from the
shaded columns, the additional sensors, and system monitors,
particularly the resource intensive β-VAE monitor, increases
the GPU memory used by ∼ 40% and execution time by ∼
0.2 seconds. However, the ReSonAte risk calculations require

9

Pr
e-

Pu
bl

ic
at

io
n

C
op

y
GPU CPUSystem

Configuration Util
(%)

Mem
(%)

Util
(%)

Mem
(%)

Execution
Time (s)

LEC only 14.3 47.2 17.6 10.4 0.024
LEC +

Runtime Monitors 14.7 86.5 18.5 10.5 0.217

LEC + Monitors +
ReSonAte 16.1 87.0 18.7 10.4 0.218

TABLE I: Resource requirements and execution times for different configu-
rations of the system. Average values computed across 20 simulation runs.

minimal computational resources taking only 0.3 milliseconds.

B. Unmanned Underwater Vehicle

In this section we discuss the primary results of applying
ReSonAte to a UUV testbed based on the BlueROV2 [45]
vehicle. The testbed is built on the ROS middleware [50] and
simulated using the Gazebo simulator environment [51] with
the UUV Simulator [52] extensions.

1) System Overview and BTD Modeling: In this example,
the UUV was tasked to track a pipeline while avoiding static
obstacles (e.g., plants, rocks, etc.) as shown in Fig. 4b. The
UUV is equipped with 6 thrusters, a forward looking sonar
(FLS), 2 side looking sonars (SLS), an IMU, a GPS, an
altimeter, an odometer, and a pressure sensor. The vehicle
has several ROS nodes for performing pipe tracking, obstacle
avoidance, degradation detection, contingency planning, and
control. Additional contingency management features such
as thruster reallocation, return-to-home, and resurfacing are
available. The UUV uses the SLS along with the FLS, odom-
etry, and altimeter to generate the HSD commands for pipe
tracking and obstacle avoidance. The degradation detector is
an LEC which employs a feed-forward neural network to de-
tect possible thruster degradation based on thruster efficiency
information. This LEC sends information to the contingency
manager including the identifier of the degraded thruster,
level of degradation, and a value measuring confidence in
the predictions. The contingency manager may then perform
a thruster reallocation (i.e. adjustment of the vehicle control
law) if necessary to adapt to any degradation. A ROS node im-
plementation of ReSonAte was used to dynamically estimate
and publish the likelihood of a collision.

2) Hazard Analysis and BTD Modeling: Using the system
requirements and its operating conditions we identified UUV
operating in presence of static obstacles as the hazard con-
dition which could result in the UUV’s collision. The static
obstacle which appears at a distance less than the desired
separation distance of 30 meters is considered to be a threat
in this example. Further, the static obstacle appearing at a
distance less than a minimum separation distance of 5 meters
is considered to be a TOP event for the BTD. This information
was used to outline a BTD for the UUV example.

3) Conditional Relationships: The probability estimation
method described in Section III-D was used to compute
the conditional probabilities for the BTD. We used data
from 350 simulation scenarios for the conditional probability
calculations. These simulations were generated using several
scenes generated by varying parameters such as the obstacle

Fig. 9: ReSonAte estimated likelihood of collision for the BlueROV2 example.
As seen in gray shaded region, the likelihood of collision increases when
thruster degradation occurs, then reduces after thruster control reallocation.

sizes (cubes with lengths (0.5,1,2,5,10) meters), the obstacle
spawn distance (value in range [5-30] meters), and random
thruster failures that were synthetically introduced by varying
the thruster1 efficiency in the range [0-60].

4) Results: Fig. 9 shows the ReSonAte estimated likelihood
of collision. The efficiency of thruster 1 degrades to 60% at 45
seconds, and the estimated likelihood of collision increases to
0.25. Soon after, the contingency manager performs a thruster
reallocation to improve the UUV’s stability, the likelihood of
collision decreases to 0.15. We are currently validating the
estimated likelihood across large simulation runs.

V. CONCLUSION AND FUTURE WORK

ReSonAte captures design-time information about system
hazard propagation, control strategies, and potential conse-
quences using BTDs, then uses the information contained in
these models to calculate risk at run-time. The frequency of
threat events and the effectiveness of hazard control strategies
influence the estimated risk and may be conditionally depen-
dent on the state of the system and operating environment.
A technique for measuring these conditional relationships in
simulation using a custom SDL was demonstrated. ReSonAte
was then applied to an AV example in the CARLA simulator to
dynamically assess the risk of collision, and a strong correla-
tion was found between the estimated likelihood of a collision
and the observed collisions. Additionally, ReSonAte’s risk
calculations require minimal computational resources making
it suitable for resource-constrained and real-time CPSs.

Future extensions and applications for ReSonAte include:
(1) dynamic estimation of event severity in addition to event
likelihood, (2) inclusion of state uncertainty into risk calcu-
lations to produce confidence bounds on risk estimates, (3)
forecasting future risk based on expected changes to system
or environment, (4) use of estimated risk for higher-level
decision making such as controller switching or enactment
of contingency plans, and (5) continuous improvement of
conditional probability estimates at run-time from operational
data.

Acknowledgement: This work was supported by the
DARPA Assured Autonomy project and Air Force Research
Laboratory.

10

Pr
e-

Pu
bl

ic
at

io
n

C
op

y
REFERENCES

[1] G. Schwalbe and M. Schels, “A survey on methods for the safety assur-
ance of machine learning based systems,” in 10th European Congress
on Embedded Real Time Software and Systems (ERTS 2020), 2020.

[2] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing
and validation,” SAE International Journal of Transportation Safety,
vol. 4, no. 1, pp. 15–24, 2016.

[3] FAA, “FAA System Safety Handbook,” December 2000.
[4] P. Bishop and R. Bloomfield, “A methodology for safety case develop-

ment,” in Safety and Reliability, vol. 20, no. 1. Taylor & Francis, 2000,
pp. 34–42.

[5] J. Rushby, “Runtime certification,” in International Workshop on Run-
time Verification. Springer, 2008, pp. 21–35.

[6] E. Denney, G. Pai, and I. Habli, “Dynamic safety cases for through-
life safety assurance,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2. IEEE, 2015, pp. 587–
590.

[7] D. Schneider and M. Trapp, “Conditional safety certification of open
adaptive systems,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 8, no. 2, pp. 1–20, 2013.

[8] A. Wardziński, “Safety assurance strategies for autonomous vehicles,” in
International Conference on Computer Safety, Reliability, and Security.
Springer, 2008, pp. 277–290.

[9] Z. Kurd, T. Kelly, J. McDermid, R. Calinescu, and M. Kwiatkowska,
“Establishing a framework for dynamic risk management in
‘intelligent’aero-engine control,” in International Conference on
Computer Safety, Reliability, and Security. Springer, 2009, pp.
326–341.

[10] F. L. Leite, D. Schneider, and R. Adler, “Dynamic risk management
for cooperative autonomous medical cyber-physical systems,” in In-
ternational Conference on Computer Safety, Reliability, and Security.
Springer, 2018, pp. 126–138.

[11] V. K. Sundar, S. Ramakrishna, Z. Rahiminasab, A. Easwaran, and
A. Dubey, “Out-of-distribution detection in multi-label datasets using
latent space of β-vae,” arXiv preprint arXiv:2003.08740, 2020.

[12] F. Cai and X. Koutsoukos, “Real-time out-of-distribution detection
in learning-enabled cyber-physical systems,” in 2020 ACM/IEEE 11th
International Conference on Cyber-Physical Systems (ICCPS). Los
Alamitos, CA, USA: IEEE Computer Society, apr 2020, pp. 174–
183. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
ICCPS48487.2020.00024

[13] C. Katrakazas, M. Quddus, and W.-H. Chen, “A new integrated colli-
sion risk assessment methodology for autonomous vehicles,” Accident
Analysis & Prevention, vol. 127, pp. 61–79, 2019.

[14] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” arXiv:1711.03938, 2017.

[15] N. Mahadevan, A. Dubey, and G. Karsai, “Application of software
health management techniques,” in Proceedings of the 6th international
symposium on software engineering for adaptive and self-managing
systems, 2011, pp. 1–10.

[16] A. N. Srivastava and J. Schumann, “The case for software health
management,” in 2011 IEEE Fourth International Conference on Space
Mission Challenges for Information Technology. IEEE, 2011, pp. 3–9.

[17] G. Steinbauer and F. Wotawa, “Model-based reasoning for self-adaptive
systems–theory and practice,” in Assurances for Self-Adaptive Systems.
Springer, 2013, pp. 187–213.

[18] T. Byun and S. Rayadurgam, “Manifold for machine learning assurance,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: New Ideas and Emerging Results, 2020, pp. 97–
100.

[19] R. A. Clothier, B. P. Williams, and N. L. Fulton, “Structuring the
safety case for unmanned aircraft system operations in non-segregated
airspace,” Safety science, vol. 79, pp. 213–228, 2015.

[20] B. P. Williams, R. Clothier, N. Fulton, S. Johnson, X. Lin, and K. Cox,
“Building the safety case for uas operations in support of natural
disaster response,” in 14th AIAA Aviation Technology, Integration, and
Operations Conference, 2014, p. 2286.

[21] E. Denney, G. Pai, and I. Whiteside, “Modeling the safety architecture
of uas flight operations,” in Computer Safety, Reliability, and Security,
S. Tonetta, E. Schoitsch, and F. Bitsch, Eds. Cham: Springer Interna-
tional Publishing, 2017, pp. 162–178.

[22] ——, “The role of safety architectures in aviation safety cases,” Relia-
bility Engineering & System Safety, vol. 191, p. 106502, 2019.

[23] N. Khakzad, F. Khan, and P. Amyotte, “Dynamic risk analysis using
bow-tie approach,” Reliability Engineering & System Safety, vol. 104,
pp. 36–44, 2012.

[24] C. Delvosalle, C. Fievez, A. Pipart, and B. Debray, “Aramis project: A
comprehensive methodology for the identification of reference accident
scenarios in process industries,” Journal of Hazardous Materials, vol.
130, no. 3, pp. 200–219, 2006.

[25] R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, and B. Veitch, “Handling data
uncertainties in event tree analysis,” Process safety and environmental
protection, vol. 87, no. 5, pp. 283–292, 2009.

[26] A. Badreddine and N. Ben Amor, “A new approach to construct optimal
bow tie diagrams for risk analysis,” in Trends in Applied Intelligent
Systems, N. Garcı́a-Pedrajas, F. Herrera, C. Fyfe, J. M. Benı́tez, and
M. Ali, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.
595–604.

[27] A. Badreddine and N. B. Amor, “A bayesian approach to construct
bow tie diagrams for risk evaluation,” Process Safety and Environmental
Protection, vol. 91, no. 3, pp. 159–171, 2013.

[28] M. Teimourikia, M. Fugini, and C. Raibulet, “Run-time security and
safety management in adaptive smart work environments,” in 2017 IEEE
26th International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE). IEEE, 2017, pp. 256–261.

[29] Y. Zhang and X. Guan, “Selecting project risk preventive and protec-
tive strategies based on bow-tie analysis,” Journal of Management in
Engineering, vol. 34, no. 3, p. 04018009, 2018.

[30] M. Vileiniskis and R. Remenyte-Prescott, “Quantitative risk prognostics
framework based on petri net and bow-tie models,” Reliability Engineer-
ing & System Safety, vol. 165, pp. 62–73, 2017.

[31] A. Misra, “Senor-based diagnosis of dynamical systems,” Ph.D. disser-
tation, Vanderbilt University Ph. D. dissertation, 1994.

[32] N. Mahadevan, A. Dubey, and G. Karsai, “Architecting health manage-
ment into software component assemblies: Lessons learned from the
arinc-653 component mode,” in 2012 IEEE 15th International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed
Computing. IEEE, 2012, pp. 79–86.

[33] ISO, “ISO 26262:2018 Road vehicles - Functional safety,” December
2018.

[34] O. Federal Aviation Administration, “Risk management handbook (faa-
h-8083-2),” 2019. [Online]. Available: https://www.faa.gov/regulations
policies/handbooks manuals/aviation/media/FAA-H-8083-2.pdf

[35] T. P. Kelly, “Arguing safety: a systematic approach to managing safety
cases,” Ph.D. dissertation, University of York York, UK, 1999.

[36] C. Haddon-Cave, The Nimrod Review: an independent review into the
broader issues surrounding the loss of the RAF Nimrod MR2 aircraft
XV230 in Afghanistan in 2006, report. DERECHO INTERNACIONAL,
2009, vol. 1025.

[37] N. G. Leveson, “The use of safety cases in certification and regulation,”
2011.

[38] Y. Matsuno and S. Yamamoto, “Toward dynamic assurance cases.” in
JCKBSE, 2012, pp. 154–160.

[39] S. L. Zabell, “The rule of succession,” Erkenntnis, vol. 31, no. 2, pp.
283–321, 1989.

[40] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: A language for scenario spec-
ification and scene generation,” in Proceedings of the 40th annual
ACM SIGPLAN conference on Programming Language Design and
Implementation (PLDI), June 2019.

[41] O. foretellix, “Open m-sdl.” [Online]. Available: https://www.foretellix.
com/open-language/

[42] I. Dejanović, R. Vaderna, G. Milosavljević, and Ž. Vuković, “Textx: a
python tool for domain-specific languages implementation,” Knowledge-
Based Systems, vol. 115, pp. 1–4, 2017.

[43] D. Karunakaran, S. Worrall, and E. Nebot, “Efficient statistical validation
with edge cases to evaluate highly automated vehicles,” in 2020 IEEE
23rd International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2020, pp. 1–8.

[44] R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar, I. Habli, and
T. Kelly, “Engineering trustworthy self-adaptive software with dynamic
assurance cases,” IEEE Transactions on Software Engineering, vol. 44,
no. 11, pp. 1039–1069, 2017.

[45] B. Robotics, “Bluerov2,” Datasheet, June, 2016.
[46] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by cheating,”

in Conference on Robot Learning. PMLR, 2020, pp. 66–75.

11

https://doi.ieeecomputersociety.org/10.1109/ICCPS48487.2020.00024
https://doi.ieeecomputersociety.org/10.1109/ICCPS48487.2020.00024
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/FAA-H-8083-2.pdf
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/FAA-H-8083-2.pdf
https://www.foretellix.com/open-language/
https://www.foretellix.com/open-language/

Pr
e-

Pu
bl

ic
at

io
n

C
op

y
[47] J. L. Pech-Pacheco, G. Cristóbal, J. Chamorro-Martinez, and

J. Fernández-Valdivia, “Diatom autofocusing in brightfield microscopy:
a comparative study,” in Proceedings 15th International Conference on
Pattern Recognition. ICPR-2000, vol. 3. IEEE, 2000, pp. 314–317.

[48] G. Shafer and V. Vovk, “A tutorial on conformal prediction,” Journal of
Machine Learning Research, vol. 9, no. Mar, pp. 371–421, 2008.

[49] V. Fedorova, A. Gammerman, I. Nouretdinov, and V. Vovk, “Plug-
in martingales for testing exchangeability on-line,” arXiv preprint
arXiv:1204.3251, 2012.

[50] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”

in ICRA Workshop on Open Source Software, 2009.
[51] N. P. Koenig and A. Howard, “Design and use paradigms for gazebo, an

open-source multi-robot simulator.” in Proceedings of 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Citeseer,
2004.

[52] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and
T. Rauschenbach, “UUV simulator: A gazebo-based package for
underwater intervention and multi-robot simulation,” in OCEANS
2016 MTS/IEEE Monterey. IEEE, sep 2016. [Online]. Available:
https://doi.org/10.1109%2Foceans.2016.7761080

12

https://doi.org/10.1109%2Foceans.2016.7761080

	introduction
	Related Work
	ReSonAte Framework
	Background
	System Analysis
	Hazard Analysis
	Assurance Case Construction

	Our Contributions: Bow-Tie Formalization & Extensions
	Run-time Risk Computation
	Estimating Conditional Relationships
	Conditional Relationships
	Scenario Description Language

	Dynamic Assurance Case Evaluation

	Evaluation
	Autonomous Ground Vehicle
	System Overview
	System Analysis
	Hazard Analysis and BTD Modeling
	Conditional Relationships
	Results

	Unmanned Underwater Vehicle
	System Overview and BTD Modeling
	Hazard Analysis and BTD Modeling
	Conditional Relationships
	Results

	Conclusion and Future Work
	References

