
Efficient Multi-Class Out-of-Distribution Reasoning
for Perception Based Networks: Work-in-Progress

Shreyas Ramakrishna∗§, Zahra Rahiminasab†§, Arvind Easwaran †, Abhishek Dubey∗
∗ Vanderbilt University

† Nanyang Technological University

Abstract—Perception-based deep neural networks used in Cy-
ber Physical Systems are known to fail when faced with inputs
that are out-of-distribution (OOD). OOD detection is a complex
problem as we need to first identify the shift in the test data
from the training distribution and then we need to isolate the
responsible generative factor(s) (weather, lighting levels, traffic
density, etc.). Unlike the state of the art that uses multi-chained
one-class classifiers, we propose an efficient single monitor that
uses the principle of disentanglement to train the latent space of
a variational autoencoder to be sensitive to distribution shifts in
different generative factors. We demonstrate our approach using
an end-to-end driving controller in the CARLA simulator.

Index Terms—β-VAE, Disentanglement, Inductive Conformal
Prediction, Mutual Information Gap.

I. INTRODUCTION

Perception-based deep neural networks (DNN) are being
used in the automotive Cyber-Physical Systems (CPS) to
perform tasks like object detection, object classification, and
end-to-end actuation control, etc. They are trained with large
datasets of images with multimodal generative factors like
time-of-day (day, night), weather (cloudy, slight-rain), and
traffic-density (no-traffic, traffic), etc. Despite the exceptional
performance, fatal incidents like Tesla’s autopilot crash [1]
and Uber self-driving car crash [2] have shown these compo-
nents to fail, when the operational input is out-of-distribution
(OOD). For the safety of CPS, it is essential to detect OOD
images and find the responsible generative factors. At this
point, the problem becomes multi-label OOD detection.

State of the art OOD detection in multi-label datasets
is addressed [3] by synthesizing the dataset into partitions
based on labels, and then train a one-class classifier for
each partition. One-class classifiers like Deep SVDD [4] and
Variational Autoencoder (VAE) [5] are widely used to detect
OOD’s. Especially, methods using the concept of VAE based
reconstruction error [6] have become popular. However, these
methods have problems. First, the reconstruction based meth-
ods are known to be less robust to errors [7]. Second, these
multi-chain classifiers are computationally expensive - images
from automotive datasets like nuScenes [8] have greater than
10 generative factors, and using one classifier for each factor
would be computationally expensive for automotive CPS.
The third problem is the issue of approximate partitions.
Synthesizing the autonomous datasets into clear partitions
(with mutually exclusive partitions) is difficult because the

§These Authors have equally contributed

generative factors are not independent. This hinders directly
using existing classifier techniques to detect OOD. Finally,
most of the existing methods rely on point predictions; that
is, they do not use the time series of input images, which is
required for robust detection.

Recently, there has been a growing interest in using the
latent space learned by a VAE for OOD detection [7]. At the
same time, there has been progress in learning disentangled
representations [5] in the latent space. Disentanglement means
that each latent unit mainly encodes probability distribution
related to a specific generative factor. However, achieving the
disentanglement of the latent space is a hard problem, as it
requires the generative factors to be independent. However,
images obtained from real-world datasets, including simula-
tors, do not have this property, thus making disentanglement
a challenging objective to achieve.

Our contribution in this paper is to describe an approach to
train a VAE with partial disentanglement and use it for OOD
detection and reasoning in images. For this, we use a form of
VAE called the β-VAE. An appropriate β (> 1) and the right
size of the latent space (n) is required to achieve disentan-
glement. For finding the right hyperparameter combination,
we use a heuristic based on an information-theoretic metric
called the Mutual Information Gap (MIG) [9]. After selecting
the β-VAE, we apply the Inductive Conformal Prediction (ICP)
[10] framework using a KL-divergence (computed with respect
to the distributions generated by the latent space variables)
based non-conformity score that indicates how similar the
input image distributions are to the training set distributions.
The non-conformity scores are then used to compute a p-
value, which is used to compute the mixture martingale [11]
over a window M of image sequences to improve the detector
robustness.

II. OOD MONITORING APPROACH

We use the latent space generated by a β-VAE along with
the KL-divergence metric to perform OOD detection and
reasoning. A β (=1) imposes a bottleneck on this information
flow, thus making it uninformative and focuses primarily on
the reconstruction of images. However, an appropriate β (> 1)
can help the latent space learn the distribution of the generative
factors better. Eventually, at a higher β, the latent space
variables become sensitive to different generative factors. Also,
for an appropriate combination of β (> 1) and latent space size
(n), the latent space gets disentangled.



Exhaustively searching for these hyperparameters is expen-
sive. So, we devise a two-step heuristic approach that includes
a simple random search [12] to select the best β value for each
n, which results in the lowest evidential lower bound (ELBO)
[5]. For each n ∈ [30, 40, 50, 100, 200, 300, 400, 500, 1000]
we find the β ∈ [1, 1.1, 1.2, 1.3, 1.4, 1.5, 2, 3, 4, 5, 10] which
results in a minimal ELBO over 100 iterations. We then
select and train 10 different β-VAE’s from the shortlisted [n,β]
combination. Next, to shortlist one β-VAE, which generates a
well disentangled latent space, we use an information theory
metric called Mutual Information Gap (MIG) [9]. MIG is a
metric based on information theory that averages the difference
between the empirical mutual information of the two most
informative latent units for each image factor and normalizes
this result by the entropy of the factor. We believe the MIG
is higher for a better disentangled latent space, so we select a
β-VAE that results in the highest MIG.

Next, given a β-VAE with the latent unit set L, we select a
detector, which is a latent unit subset Ld ⊆ L that can detect
distribution shifts from the training dataset. Further, we select
reasoners, which are latent unit(s) Lf ⊆ Ld that can identify
distribution shifts for each generative factor. For identifying
these latent units, we perform a latent unit comparison method,
similar to the one in [5]. The key idea (as in [5]) is that
informative latent units have higher KL-divergence from the
normal distribution N (0, 1), while the uninformative ones will
have KL-divergence close to zero.

At runtime, an operational test image is passed to the
encoder of the β-VAE monitor to generate the latent unit
distributions. The latent units (Ld and Lf ), are plugged into
the Inductive Conformal Prediction [10] framework and non-
conformity scores are computed using KL-divergence. Using
this score, a p-value is computed, which is a fraction of the
calibration observations that have a non-conformity measure
above the test observation. Then, the past M p-values are
used to compute the mixture martingale [11] at time t. The
martingale will grow over time only if there are consistently
low p-values within the time window [t − M + 1, t]. A
consistently growing martingale indicates the test images are
OOD. Finally, a cumulative sum (CUSUM) is computed over
the martingale value as follows: S0 = 0 and St+1 = max(0,
St+Mt−1-ω), where ω is the weight assigned to prevent St

from consistently increasing to a large value. Then, the St

value is compared against a threshold (τ ) to detect OOD and
identify feature variations.

III. EXPERIMENTAL RESULTS

We applied our approach to an autonomous end-to-end
driving controller built in the CARLA simulator [13]. The
block diagram of the software components for the end-to-
end control of an autonomous vehicle in CARLA is shown
in Fig. 1. The components marked in green come pre-built
with the simulator, and the ones in blue have been designed
by us. These components are implemented as separate python
processes, and they communicate using the ZMQ [14] publish-
subscribe communication pattern. For autonomous control of

CARLA
Env

Autopilot

LEC

Monitor

Decision
Manager

Detector	and
	Feature	Martingale		

Steer

Steer

Steer
ImageCARLA

Env Vehicle
Throttle

-VAE

-VAE
Compute
ICP and 

MartingaleLatent units

Green - Inbuilt CARLA nodes    Blue - Nodes designed in this work

Fig. 1: A block diagram of the components for end-to-end control of an
autonomous vehicle using a LEC in the CARLA simulator. The components
in green come pre-built with CARLA, while the components in blue are
designed for our experiments. Also, all the CARLA components require a
GPU for the simulation engine, while all the other components are run in a
resource limited setting.

the vehicle, an NVIDIA DAVE-II [15] Learning Enabled
Component (LEC) is used to predict steering values using the
front-facing camera images.

To train the control LEC and β-VAE monitor, we collected
4780 camera images using CARLA’s inbuilt autopilot mode.
These images belonged to 3 generative factor partitions of
rain intensity (no-rain, mild-rain, and heavy-rain), illumination
levels (low, medium, high), and time-of-day (day, evening).
Using the monitor design steps (Section II), we selected a β-
VAE with β = 1.4 and n = 30 which resulted in the highest
MIG (0.000072). Then, we identified a subset of 9 latent
units that encoded most information about the training image
representations and used it as Ld.

Further, we identified that rain-intensity and illumination-
level had an impact on the steering predictions of the LEC, so
we tried to identify the latent units encoding their information.
From Ld we identified 1 latent unit each that encoded only
information about rain-intensity (L30), and illumination-level
(L3). Besides, we empirically found the thresholds for the
CUSUM detectors. For the detector CUSUM, we selected
ω = 14 and τ = 100. These parameters resulted in the
lowest false positives (< 1%) when tested for 6 different
in-distribution and OOD scenes. For the feature detector
CUSUM, we selected ω = 18 and τ = 130. These parameters
were found empirically. Finally, we selected a sliding window
size of M = 20 for computing the martingale.

Using the identified parameter values, we evaluated the
performance of the monitor with 4 experiments (See Fig. 2).
The first experiment was an in-distribution scenario, so the
martingales of the detector and reasoners remain below the
threshold. In experiment 2, the rain intensity changes at t = 3s,
and only the martingale corresponding to that specific factor,
and the detector martingale increases after t = 3s (Similar
results on changing illumination level is not shown due to lack
of space). In experiment 3, both the rain intensity and illumi-
nation level is changed to OOD at t = 3s. The martingales of
generative factors, as well as the detector increase after t = 3s.
Finally, experiment 4 was designed to show the robustness of
our approach to an unseen scene with a new road segment, but
with in-distribution levels of rain intensity and illumination

2



0

10

20

lo
gM

 
 (

de
te

ct
or

)

Exp-1 Exp-2 Exp-3 Exp-4

0

10

20

lo
gM

 
 (

Ill
um

in
at

io
n)

0 1 2 3 4 5 6
time (s)

0

10

20

 lo
gM

 
 (

Ra
in

 In
te

ns
it

y)

0 1 2 3 4 5 6
time (s)

0 1 2 3 4 5 6
time (s)

0 1 2 3 4 5 6
time (s)

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

S

0

100

200

300

400

S

0

100

200

300

400

S

Fig. 2: Performance of the β-VAE monitor for experiments 1 - 4, discussed in Section III. The blue lines represent the martingale values, the solid green
lines represent the CUSUM (S) values, and the dotted red lines represent the threshold (τ ) for CUSUM comparison.

levels. In this case, the martingales corresponding to the rain
intensity and illumination levels do not increase above the
thresholds. However, because of considerable variation in the
generative factors when compared to the training set, the
detector martingale starts to increase from t = 0s. For these
experiments, the detector had precision and recall of 97.2%
and 86.32%, and an F1-score of 91.10%. Also, the average
detection time using all 30 latent units was 88 ms, and this
was reduced to 74.09 ms when using the selected 9 latent units.
This 16% time reduction in the detection time, improved the
simulation Frame Per Seconds (FPS) from 11 to 14. Further,
the reasoners took an average time of 48.7 ms.

IV. CONCLUSION AND FUTURE WORK

We proposed a latent space-based β-VAE monitor for OOD
detection and reasoning. For this, we described a heuristic-
based method to design the β-VAE monitor and to select
the latent units encoding information about generative factors
of interest (e.g. illumination level, rain-intensity). Finally, we
used the selected latent units in the ICP framework for run-
time monitoring. Our evaluations using the CARLA simulator
shows the monitor to reliably detect OOD with an F1-score
of 91.10% in a short time of 74 ms.

This work-in-progress uses a heuristic-based method using
random search and MIG to select the β-VAE hyperparameters,
and we are currently working on a principled mechanism for
selecting these hyperparameters. We are also working towards
comparing our OOD detection approach to other One-class
classifier techniques in the literature.

Acknowledgement This work was supported in part by
the DARPA Assured Autonomy project, Air Force Research
Laboratory and partially under the MoE, Singapore, Tier-2
grant #E2019-T2-2-040.

REFERENCES

[1] B. Vlasic and N. E. Boudette, “’self-driving tesla was involved in fatal
crash,’us says,” New York Times, vol. 302016, 2016.

[2] P. Kohli and A. Chadha, “Enabling pedestrian safety using computer
vision techniques: A case study of the 2018 uber inc. self-driving
car crash,” in Future of Information and Communication Conference.
Springer, 2019, pp. 261–279.

[3] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” Machine learning, vol. 85, no. 3, p. 333,
2011.

[4] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui,
A. Binder, E. Müller, and M. Kloft, “Deep one-class classification,”
in International conference on machine learning, 2018, pp. 4393–4402.

[5] I. Higgins, L. Matthey, A. Pal, C. Burgess, X.-a. Glorot, M. Botvinick,
S. Mohamed, and A.-d. Lerchner, “Beta-VAE: Learning basic visual
concepts with a constrained variational framework.” ICLR17, 2016.

[6] J. An and S. Cho, “Variational autoencoder based anomaly detection
using reconstruction probability,” Special Lecture on IE, vol. 2, no. 1,
2015.

[7] T. Denouden, R. Salay, K. Czarnecki, V. Abdelzad, B. Phan, and
S. Vernekar, “Improving reconstruction autoencoder out-of-distribution
detection with mahalanobis distance,” arXiv preprint arXiv:1812.02765,
2018.

[8] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” arXiv preprint arXiv:1903.11027, 2019.

[9] T. Q. Chen, X. Li, R. B. Grosse, and D. K. Duvenaud, “Isolating sources
of disentanglement in variational autoencoders,” in Advances in Neural
Information Processing Systems, 2018, pp. 2610–2620.

[10] G. Shafer and V. Vovk, “A tutorial on conformal prediction,” Journal of
Machine Learning Research, vol. 9, no. Mar, pp. 371–421, 2008.

[11] V. Fedorova, A. Gammerman, I. Nouretdinov, and V. Vovk, “Plug-
in martingales for testing exchangeability on-line,” arXiv preprint
arXiv:1204.3251, 2012.

[12] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in neural information
processing systems, 2011, pp. 2546–2554.

[13] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” arXiv:1711.03938, 2017.

[14] P. Hintjens, ZeroMQ: messaging for many applications. ” O’Reilly
Media, Inc.”, 2013.

[15] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

3


