
Trusted Confidence Bounds for Learning Enabled
Cyber-Physical Systems

Dimitrios Boursinos
Institute for Software Integrated Systems

Vanderbilt University
Nashville TN, USA

dimitrios.boursinos@vanderbilt.edu

Xenofon Koutsoukos
Institute for Software Integrated Systems

Vanderbilt University
Nashville TN, USA

xenofon.koutsoukos@vanderbilt.edu

Abstract—Cyber-physical systems (CPS) can benefit by the use
of learning enabled components (LECs) such as deep neural
networks (DNNs) for perception and decision making tasks.
However, DNNs are typically non-transparent making reasoning
about their predictions very difficult, and hence their applica-
tion to safety-critical systems is very challenging. LECs could
be integrated easier into CPS if their predictions could be
complemented with a confidence measure that quantifies how
much we trust their output. The paper presents an approach
for computing confidence bounds based on Inductive Conformal
Prediction (ICP). We train a Triplet Network architecture to learn
representations of the input data that can be used to estimate the
similarity between test examples and examples in the training
data set. Then, these representations are used to estimate the
confidence of set predictions from a classifier that is based on
the neural network architecture used in the triplet. The approach
is evaluated using a robotic navigation benchmark and the results
show that we can computed trusted confidence bounds efficiently
in real-time.

Index Terms—Cyber-physical systems, deep neural networks,
assurance monitoring, conformal prediction, triplet, robot navi-
gation

I. INTRODUCTION

Machine learning components are being used by many
cyber-physical system (CPS) applications because of their abil-
ity to handle dynamic and uncertain environments. Deep neu-
ral networks (DNNs), for example, are used for perception and
decision making tasks in autonomous vehicles. Although such
components offer many advantages for representing knowl-
edge in high-dimensional spaces and approximating complex
functions, they introduce significant challenges when they are
integrated into the system. Typical DNNs are non-transparent
and it is not clear how to rationalize their predictions. Modern
architectures are parameterized using million of values which
makes reasoning about their predictions very challenging.

Complementing the predictions of DNNs with a confidence
measure can be very useful for improving the trustworthi-
ness of such models and allow their application to safety
critical systems. Several approaches have been proposed for
confidence estimation. Neural networks for classification, in
particular, typically provide probability-like outputs using a
softmax layer. However, these probabilities are typically over-
confident even for inputs coming from the same distribution
as the training data [5]. The reason is that the softmax

probabilities are not well-calibrated meaning they do not
provide a good estimate of the error rates. Several methods
are proposed to compute well-calibrated confidence values. A
class of methods aims to estimate scaling factors from the
training data and use them to scale the softmax probabilities
in order to compute well-calibrated confidence values and
include temperature scaling [5], Platt scaling [10], and isotonic
regression [15]. Although such methods can compute well-
calibrated confidence values, using them in CPS requires
selecting an appropriate confidence bound which ensures a
very small error rate and at the same time limiting the number
of inputs for which a confidence prediction cannot be made.

The approach presented in this paper is based on con-
formal prediction (CP) [1]. For classification, CP associates
reliable confidence values with set predictions that may include
multiple labels. The confidence measures are well-calibrated
and can be computed in an online setting which is suitable
for CPS applications. The online application of the approach
is based on the inductive conformal prediction (ICP) for
computational efficiency [8]. ICP leverages a calibration data
set that is used to compute the confidence values of new
previously unseen inputs efficiently. The confidence values
rely on nonconformity functions computed using techniques
such as k-Nearest Neighbors and Kernel Density Estimation.
However, such approaches do not scale for high-dimensional
inputs.

In our previous work, we used the ICP framework for
assurance monitoring of CPS with machine learning com-
ponents [3]. In order to handle high-dimensional inputs in
real-time, the approach computes the nonconformity scores
using the embedding representations produced by trained DNN
models in lower dimensional spaces than the input space. The
main contribution of this paper is a significant improvement in
computing confidence bounds by employing a triplet network
architecture to learn representations of the input data that can
be used to estimate the similarity between test examples and
examples in the training data set. Then, these representations
are used to estimate the confidence of set predictions from a
classifier that is based on the neural network architecture used
in the triplet. In order to achieve the desired confidence, the
LEC may need to generate more than one possible prediction.
Sets with multiple predictions can be useful especially when

the alternatives are provided to a human operator. However,
in this paper, we focus on autonomous CPS and compute the
optimal confidence bounds required for the LEC to generate
single predictions.

Another contribution of the paper is the evaluation of the
approach using the SCITOS-G5 robotic navigation benchmark.
Our results show that we can compute trusted confidence
bounds efficiently in real-time. We also compare the proposed
approach with the approach presented in [3] which relies
on applying ICP using representations learned by the model
used to generate the predictions. The comparison shows for
a chosen confidence bound, ICP using triplet produces fewer
sets with multiple candidate labels, or equivalently there is
a higher confidence bound that eliminate all the sets with
multiple predictions.

The paper is organized a follows. Section II describes the
problem. Section III reviews the Triplet Network architecture
and the associated training algorithms. Section IV presents
the methods for ICP using the Triplet. We evaluate the
performance of the proposed approach in Section V and we
discuss the conclusions in Section VI.

II. PROBLEM

Learning-enabled components in CPS are used for taking
decisions based on the state of the system and the environment.
For a mobile robot, for example, an LEC can be used to navi-
gate through a room while avoiding collisions with obstacles.
A commonly used approach involves learning a model using
training data and using the learned model for operation. We ex-
pect the system to perform better in scenarios similar to those
used during the training phase. The problem we consider is the
computation of a significance level along with each decision by
the LEC. The significance level must be well-calibrated which
means that it must be consistent with the expected error and
ideally the expected error rate must be bounded. Moreover,
CPS applications require minimizing the number of incorrect
decisions while limiting the number of false alarms to enable
efficient monitoring. Another requirement for CPS is that such
monitoring must be performed in real-time often with limited
computional resources.

III. TRIPLET NETWORK

The ICP framework requires a way to estimate the similarity
between the training data and a test input. The main idea in
our approach is that we can do this efficiently by learning
representations of the inputs for which the Euclidean distance
is a suitable measure of similarity. The triplet network is
a Deep Neural Network (DNN) architecture that is trained
to compute appropriate representations for metric or distance
learning [6].

A Triplet Network is composed using three copies of the
same neural network with shared parameters as shown in
Fig. 1. The training examples consist of three samples, the
anchor sample x, the positive sample x+ and the negative
sample x−. The samples x and x+ are of the same class
while x− is of a different class. The last layer of the neural

network computes a representation Net(x). The objective is
to maximize the distance between inputs of different classes
|Net(x) − Net(x−)| and minimize the distance of inputs
belonging to the same class |Net(x)−Net(x+)|. To achieve
this, training uses the loss function:

Loss(x, x+, x−) = max(|Net(x)−Net(x+)|−
|Net(x)−Net(x−)|+ α, 0)

where α is the margin between positive and negative pairs.
The triplet network can be trained by randomly sampling

anchor data from the training set and augmenting them with
one training sample with the same label as the anchor’s and
one sample with a different label, randomly chosen. However,
this method leads to slow training and low performance as
samples that result to |Net(x) − Net(x−)| >> |Net(x) −
Net(x+)|+α do not provide useful information. The training
can be improved by carefully mining the training data [14].
For each training iteration, first, the anchor training data are
randomly chosen. For each anchor, the hardest positive sample
is chosen, meaning a sample from the same class as the anchor
that is located the furthest away from the anchor. Then, the
triplets are formed by mining all the hard negative samples,
meaning the samples that satisfy |Net(x) − Net(x−)| <
|Net(x)−Net(x+)|.

x− x x+

Net Net Net

||Net(x)−Net(x−)||2 ||Net(x)−Net(x+)||2

Comparator

Figure 1: Triplet network structure [6]

A trained triplet network maps the raw data inputs to a
lower dimensional space called embedding space. The distance
between the representations Net(x) of the inputs is a useful
measure of similarity and can be used for classification by
training a k-NN classifier on the embedding space of the
training data. This distance can also be used by the ICP
framework as described in the next section.

IV. TRIPLET-BASED ICP

In this section, we briefly explain the Inductive Confor-
mal Prediction (ICP) approach based on the Triplet Network

x

Net

k-NN ICP

ŷ Γε

(a)

x

Net’

softmax ICP

ŷ Γε

(b)

Figure 2: (a) LEC based on Triplet and (b) LEC based on
DNN classifier

architecture. We consider a sequence of training examples,
z1, . . . , zl from Z, where each zi is a pair (xi, yi) with xi the
feature vector and yi the corresponding label. We also consider
a test input xl+1 which we wish to classify. ICP assumes that
all the examples z1, . . . , zl+1 are independent and identically
distributed (IID) generated from the same but usually unknown
probability distribution.

For a chosen significance level ε ∈ [0, 1], the objective is
to generate a set of possible labels Γε for the input xl+1,
such that the probability of the correct label yl+1 /∈ Γε

does not exceed ε. ICP is based on a nonconformity measure
(NCM) which is a dissimilarity metric between an example
zl+1 and the examples of the training set z1, . . . , zl. There are
many different possible NCMs that can be used [3], [1], [13],
[12], [7]. The proposed approach uses the Triplet Network to
estimate similarities by encoding the inputs to an embedding
space where the Euclidean distance between two samples is a
direct measure of similarity. NCMs defined in the embedding
space include (1) the k-Nearest Neighbors (k-NN) [9], (2)
the one Nearest Neighbor (1-NN) [13] and (3) the Nearest
Centroid [1].

The k-NN NCM finds the k most similar examples in
the training data and counts how many of those are labeled
different than the candidate label y of a test input x. We denote
f : X → V the mapping from the input space X to the
embedding space V defined by the Triplet’s last layer. After
the training of the Triplet is complete, we compute and store
the encodings vi = f(xi) for the training data xi. Given a
test example x with encoding v = f(x), we compute the k-
nearest neighbors in V and store their labels in a multi-set
Ω. The k-NN nonconformity of the test example x with a
candidate label y is defined as:

α(x, y) = |i ∈ Ω : i 6= y|.

The 1-NN NCM requires to find the most similar example
in the training set that has the same label as the candidate

label y of a test input x as well as the most similar example
that belong to any other class other than y. It is defined as:

α(x, y) =
mini=1,...,n:yi=y d(v, vi)

mini=1,...,n:yi 6=y d(v, vi)

where v = f(x), vi = f(xi), and d is the euclidean distance
metric in the V space.

The Nearest Centroid NCM simplifies the task of computing
individual training examples that are similar to a test example
when there is a large amount of training data. We expect
examples that belong to a particular class to be similar to
each other so for each class yi we compute its centroid
µyi =

∑ni
j=1 v

i
j

ni
, where vij is the embedding representation of

the jth training example from class yi and ni is the number
of training examples in class yi. The nonconformity function
is defined as:

α(x, y) =
d(µy, v)

mini=1,...,n:yi 6=y d(µyi , v)

where v = f(x). It should be noted that for computing the
nearest centroid NCM, we need to store only the centroid for
each class.

The NCM a(x, y) is a measure of dissimilarity between
a test input x with candidate label y and the training data
z1 . . . zl as larger values would indicate higher “dissimilarity”.
However, this measure does not provide useful information
by itself but it can be used by comparing it with NCM
values computed using a calibration set of known labeled data.
Consider the training set (z1 . . . zl). This set is split into two
parts, the proper training set (z1 . . . zm) of size m < l that
will also be used for the training of the Triplet Network and
the calibration set (zm+1 . . . zl) of size l − m. The method
first computes the NCMs a(xi, yi), i = m + 1 . . . l for the
examples in the calibration set. Given a test example x with
an unknown label y, the method forms a set |Γε| of possible
labels ỹ so that P (y /∈ |Γε|) < ε. For all the candidate labels
ỹ, ICP is based on the empirical p-value defined as

pj(x) =
|{α ∈ A : α ≥ α(x, j)}|

|A|
.

that computes the fraction of nonconformity scores of the
calibration data that are equal or larger than the nonconformity
score of a test input. A candidate label is added to Γε if
pj(x) > ε.

Depending on the desired significance level ε, there may
be more than one possible label. Although these multiple
labels can provide useful information, we assume we do not
have a way to process more than one possible label and we
want to minimize these cases. The objective of the monitoring
algorithm is after receiving each input to compute a valid
prediction that ensures a predefined error rate (based on ε)
and limits the number of input examples for which a confident
prediction cannot be made. The output of the monitor is
defined as:

out =


0, if |Γε| = 0

1, if |Γε| = 1

reject, if |Γε| > 1

Depending on the size of the set Γε, the monitor outputs
out = 1 to indicate there is a single prediction with bounded
confidence by ε. If the set Γε is either empty or have multiple
labels, the monitor raises alarms to indicate that no decision
can be made. However, we distinguish between multiple and
no predictions, because they may lead to different action in
the system. An empty Γε may be an indication that the input
is out-of-distribution while multiple possible labels indicates
that the accuracy of the underlying model is lower than the
chosen ε.

Algorithm 1 – Monitoring Algorithm.

Input: training data (X,Y), calibration data (Xc, Y c)
Input: trained neural network f with l layers
Input: Nonconformity function α
Input: test input z
Input: significance level threshold ε

1: // Compute the nonconformity scores for the calibration
data offline

2: A = {α(x, y) : (x, y) ∈ (Xc, Y c)} . Calibration
3: // Generate prediction sets for each test data online
4: for each label j ∈ 1..n do
5: Compute the nonconformity score α(z, j)

6: pj(z) = |{α∈A:α≥α(z,j)}|
|A| . empirical p-value

7: if pj(z) ≥ ε then
8: Add j to the prediction set Γε

9: end if
10: end for
11: if |Γε| = 0 then
12: return 0
13: else if |Γε| = 1 then
14: return 1
15: else
16: return Reject
17: end if

V. EVALUATION

In this section, we evaluate how the triplet network improves
the computation of significance levels using ICP. For the
comparison, we use metrics that include how well inputs for
different classes are clustered in the embedding represenation
learned by the Triplet, the validity and efficiency of the pro-
duced prediction sets |Γε|, the execution time of the monitoring
algorithm, and the required memory.

A. Experimental Setup

We apply the proposed method to the SCITOS-G5 wall
following robot navigation dataset [4]. The robot has the task
of navigating around the room counter-clockwise in close
proximity to the walls. It is equipped with 24 ultrasound
sensors that are sampled at a rate of 9 samples per second. The
possible actions are “Move-Forward”, “Sharp-Right-Turn”,
“Slight-Left-Turn”, and “Slight-Right-Turn”. The SCITOS-G5
dataset contains 5456 raw values of the ultrasound sensor
measurements as well as the decision it took in each sample.

10% of the samples is used for testing. From the remaining
90% of the data, 80% is used for training and 20% for
calibration and/or validation.

The triplet network is formed using three identical DNNs
with shared weights as shown in Fig. 1. Since the inputs in
the SCITOS-G5 dataset come from 24 sensors, we treat them
as vectors and use a fully connected neural network. The
parameters of the network architecture are shown in Table I.
For the baseline approach the DNN of Table I is trained using
the dedicated training data. The output of the hidden layer
FC4, without taking into account the ReLu activation, is used
to produce the representations for the baseline ICP. The FC5
is used as the baseline DNN classifier. The Triplet is trained
using three copies of the same base DNN with hidden layers
FC1-FC4. After training, only one of the three copies is used
to generate the embeddings on the output of FC4 without any
activation.

Layer Size Activation
FC 1 128 ReLu
FC 2 128 ReLu
FC 3 128 ReLu
FC 4 16 ReLu
FC 5 4 Softmax

Table I: The DNN architecture

All the experiments run in a desktop computer equipped
with and Intel(R) Core(TM) i9-9900K CPU and 32 GB RAM
and a Geforce RTX 2080 GPU with 8 GB memory.

B. Triplet Performance

We first look at how well the triplet clusters the data on a
16-dimensional space. For comparison, we use the embedding
space produced by the FC4 hidden layer of the DNN classifier.
A commonly used metric of the separation between classes is
the Silhouette [11]. For each sample, we first compute the
mean distance between i and all other data points in the same
cluster in the embedding space

a(i) =
1

|Ci| − 1

∑
j∈Ci,i6=j

d(i, j)

.
Then we compute the smallest mean distance from i to all

the data points in any other cluster

b(i) = min
k/∈i

1

|Ck|
∑
j∈Ck

d(i, j)

.
The silhouette value is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
. Each sample i in the embedding space is assigned a silhouette
value −1 ≤ s(i) ≤ 1 depending on how close and how far
it is to samples belonging to the same and different classes
respectively. The closer s(i) is to 1, the closer the sample is to
samples of the same class and further from samples belonging
to other classes. To compare the representations learned using

the Triplet with the representations learned using the FC4
hidden layer of the fully connected DNN, we compute the
mean silhouette over the training data and the validation data
separately. In Table II, we see that the representations learned
by the Triplet form better-defined clusters.

Training Silhouette Validation Silhouette
Triplet Embeddings 0.52 0.46
DNN Embeddings 0.17 0.17

Table II: Clustering comparison using the silhouette coefficient

Another way to evaluate the performance of the triplet
network is to combine it with a k-Nearest Neighbors classifier
as shown in Figure 2a, and compute the classification accuracy.
A test input is converted to an embedding representation using
the triplet and then the k-NN classifier with k=15 is used
to make a prediction. The baseline DNN uses a softmax
activation (Figure 2b) for the classification. The Table III
shows the accuracy of the triplet combined with a k-NN
compared to the softmax classifier both using the same base
neural network architecture shown in Table I. The triplet
network results in a better performance than the DNN classifier
with softmax.

Training Accuracy Testing Accuracy
Triplet + k-NN 95% 91.2%

DNN + Softmax 91.93% 88.49%

Table III: Comparison of the classification accuracy between a
k-NN classifier on the triplet embeddings and a baseline DNN
with softmax layer

C. ICP and Assurance Monitoring

The SCITOS-G5 robot is a safety-critical CPS for which the
controller needs to take decisions with a well-calibrated and
valid predefined significance level. As a baseline, we consider
a NCM defined based on the penultimate layer of a DNN to
generate a representations that allow real-time monitoring [3].
We evaluate the performance of the triplet when used with
the nonconformity functions presented in IV. In particular, we
compare the calibration and validity of the predicted candidate
label sets as well as we compute the bound ε that eliminates the
sets Γε with |Γε| > 1, that is the sets with multiple predictions.

First, we verify that the error rates of the monitoring algo-
rithm are bounded by the significance level ε. We compute the
percentage of incorrect predictions and we plot the cumulative
error for different values of ε. In Figure 3, we plot the
cumulative error for three different values of ε for the SCITOS-
G5 dataset using the Nearest Centroid nonconformity function.
We see that the three different significance levels bound the
cumulative error rate well. Similar behavior is observed using
the other two nonconformity functions.

In order to see how well-calibrated the confidence bounds
are as well as how many sets with multiple candidate pre-
dictions are generated when ε ∈ [0.001, 0.4], we plot the
calibration and performance curves in Figure 4. The number

0 100 200 300 400 500
examples

0

10

20

30

40

50

cu
m

ul
at

iv
e

er
ro

rs
 a

t d
iff

re
nt

 si
gn

ifi
ca

nc
e

le
ve

ls

Significance level
0.01
0.05
0.10

Figure 3: Cumulative error curve

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
significance level %

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
ta

ge
 o

f e
rro

rs
 a

nd
 m

ul
tip

le
 p

re
di

ct
io

ns
% of error predictions
% of multiple predictions

Figure 4: Calibration and performance curve

of multiple predictions decreases fast as ε increases. Further,
the error rate is well-calibrated and increases linearly with ε.

Table IV reports the average execution time for each test
input and the required memory using different nonconformity
functions. The memory needed for the ICP application with
each NC function is the memory required to store the DNN
weights and the memory required to store the training data
used by each NC function. In the k-NN and 1-NN case,
the encodings of the training data are stored in a k − d
tree [2] that is used to compute efficiently the nearest neigh-
bors. In the 1-NN case, it is required to find the nearest
neighbor in the training data for each possible class which is

Estimate ε ε = 0.01 ε = 0.05 Runtime Requirements
Architecture NC Functions ε Errors Errors Multiples Errors Multiples Memory Time

Triplet
k-NN 0.089 9.3% 0% 100% 4% 11.9% 1.02 MB 1.4ms
1-NN 0.087 6.8% 0.2% 44.3% 2.4% 13.2% 3.5 MB 2.8ms

Nearest Centroid 0.092 8.8% 0.9% 50.4% 5.8% 9% 180 kB 1.1ms

FC DNN
k-NN 0.095 10.2% 0% 100% 1.5% 39.7% 1.02 MB 1.6ms
1-NN 0.08 7.9% 1.4% 33.9% 2.5% 22.2% 3.5 MB 3ms

Nearest Centroid 0.201 19.4% 1.6% 75.3% 1.6% 69% 180 kB 1.4ms

Table IV: Test results for different values of ε

computationally expensive resulting in larger execution time.
The nearest centroid nonconformity function requires storing
only the centroids for each class so the additional memory
required is minimal. Both the triplet network architecture and
the FC DNN we use as a baseline have the same network
architecture and generate the same embedding size so the
memory requirements are exactly the same between the two.

The evaluation results demonstrate that both the baseline
FC DNN based ICP confidence monitor and the Triplet based
ICP confidence monitor have well-calibrated error rates. The
approach allows selecting the significance level to trade-
off errors and alarms. When our objective is to minimize
the number of alarms raised because of multiple candidate
predictions, the Triplet with k-NN or Nearest Centroid NC
functions satisfies it while keeping a higher significance level.
When the significance level is selected, the Triplet based
algorithm produces less sets of multiple candidate predictions.
Finally, the memory requirements and the execution times for
both approaches show that this monitoring system can be used
for real-time CPS applications.

VI. CONCLUSION

DNN components are being used in Cyber-physical systems
(CPS) to perform tasks like perception and control. However,
their decision making process cannot be interpreted in a
straightforward way and they cannot provide well-calibrated
probabilities on the correctness of their predictions. This paper
considers the problem of complementing the prediction of
DNNs with a computation of confidence for real-time mon-
itoring of CPS. We used the Inductive Conformal Prediction
framework for classification tasks to produce sets of predic-
tions with an error rate bounded by a chosen significance level.
The evaluation results demonstrate that the addition of Triplet
to the ICP framework produces well-calibrated probabilities
as well as less prediction sets with more than one candidate
decisions for a given significance level. The Triplet networks
have been used on applications with higher dimensional input
space such as images. Thus our future work is to scale our
suggested assurance monitoring approach to be used on ICP
applications that deal with images, like the camera outputs
on self driving vehicles. Moreover, since there are many NC
functions that can be used it is natural to see if we can combine
the prediction sets produced by each of them on a test input
using ensemble methods with voting to produce a narrower
prediction set.

ACKNOWLEDGMENT

The material presented in this paper is based upon work
supported by the Defense Advanced Research Projects Agency
(DARPA) through contract number FA8750-18-C-0089 and
the Air Force Office of Scientific Research (AFOSR) DDDAS
through contract number FA9550-18-1-0126. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of
DARPA or AFOSR

REFERENCES

[1] V. Balasubramanian, S.-S. Ho, and V. Vovk. Conformal Prediction
for Reliable Machine Learning: Theory, Adaptations and Applications.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition,
2014.

[2] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, Sept. 1975.

[3] D. Boursinos and X. Koutsoukos. Assurance monitoring of cyber-
physical systems with machine learning components. arXiv preprint
arXiv:2001.05014, 2020.

[4] D. Dua and C. Graff. UCI machine learning repository, 2017.
[5] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration

of modern neural networks. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, pages 1321–
1330. JMLR.org, 2017.

[6] E. Hoffer and N. Ailon. Deep metric learning using triplet network. In
International Workshop on Similarity-Based Pattern Recognition, pages
84–92. Springer, 2015.

[7] U. Johansson, H. Linusson, T. Löfström, and H. Boström. Model-
agnostic nonconformity functions for conformal classification. In 2017
International Joint Conference on Neural Networks (IJCNN), pages
2072–2079, May 2017.

[8] H. Papadopoulos. Inductive conformal prediction: Theory and applica-
tion to neural networks. In Tools in artificial intelligence. IntechOpen,
2008.

[9] N. Papernot and P. McDaniel. Deep k-nearest neighbors: Towards
confident, interpretable and robust deep learning, 2018.

[10] J. C. Platt. Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. In ADVANCES IN
LARGE MARGIN CLASSIFIERS, pages 61–74. MIT Press, 1999.

[11] P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20:53 – 65, 1987.

[12] G. Shafer and V. Vovk. A tutorial on conformal prediction. J. Mach.
Learn. Res., 9:371–421, June 2008.

[13] V. Vovk, A. Gammerman, and G. Shafer. Algorithmic Learning in a
Random World. Springer-Verlag, Berlin, Heidelberg, 2005.

[14] H. Xuan, A. Stylianou, and R. Pless. Improved embeddings with easy
positive triplet mining. arXiv preprint arXiv:1904.04370, 2019.

[15] B. Zadrozny and C. Elkan. Transforming classifier scores into accurate
multiclass probability estimates. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’02, pages 694–699, New York, NY, USA, 2002. ACM.

