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Abstract—Development of Cyber Physical Systems (CPSs)
requires close interaction between developers with expertise in
many domains to achieve ever-increasing demands for improved
performance, reduced cost, and more system autonomy. Each
engineering discipline commonly relies on domain-specific mod-
eling languages, and analysis and execution of these models is
often automated with appropriate tooling. However, integration
between these heterogeneous models and tools is often lacking,
and most of the burden for inter-operation of these tools is placed
on system developers. To address this problem, we introduce a
workflow modeling language for the automation of complex CPS
development processes and implement a platform for execution
of these models in the Assurance-based Learning-enabled CPS
(ALC) Toolchain. Several illustrative examples are provided
which show how these workflow models are able to automate
many time-consuming integration tasks previously performed
manually by system developers.

Index Terms—cyber physical systems; machine learning; model
based design; workflow automation

ACRONYMS

ALC Assurance-based Learning-enabled CPS
ANN Artificial Neural Network
CPS Cyber Physical System
CNN Convolutional Neural Network
DSMLDomain Specific Modeling Language
DAG Directed Acyclic Graph
LEC Learning Enabled Component
ML Machine Learning
UUV Unmanned Underwater Vehicle

I. INTRODUCTION

Modern Cyber Physical System (CPS) design is a complex
process requiring multi-disciplinary expertise. Model and com-
ponent based engineering techniques are proven approaches
based on the traditional idea of ”separation of concerns”. Each
engineering domain relies on their own particular modeling
languages, often supported by multiple software tools. These
tools provide automation for a wide range of common devel-
opment tasks, and some existing toolchains provide integrated
platforms with many such tools. These platforms provide
numerous benefits including version control of system models,
automatic tracking and maintenance of generated artifacts, and

better cross-domain interaction among others. The Assurance-
based Learning-enabled CPS (ALC) Toolchain [1] is one such
platform which assists in the development of CPSs using
data-driven development techniques such as machine learning.
Any component which uses these techniques is known as a
Learning Enabled Component (LEC).

Increasing system complexity and performance demands
require close coordination between disciplines as well as more
interaction between the supporting software tools. However,
most existing platforms only provide automation for particular
processes within their respective domains. Outside of these
selected processes, the system developer is left with the burden
of performing any required interfacing between tools such as
data and model transformations, passing of artifacts from one
tool to another, and configuration of tools before execution.
To address this problem, we introduce a Domain Specific
Modeling Language (DSML) for the purpose of modeling CPS
development workflows. This language allows for specification
of generic activity graphs where each activity may involve
the use of one or more domain-specific tools. The workflow
language has executable semantics, hence we implemented
both the language and an appropriate execution engine within
the ALC Toolchain. The engine, known as the workflow
executor, can automate and monitor the execution of these
processes, significantly reducing the burden placed on the
developer.

The remainder of this paper is organized as follows. Section
II presents related research about automation of individual
tasks as well as modeling and execution of complete work-
flows. Next, Section III provides a brief introduction to the
ALC Toolchain, the implementation platform for our workflow
modeling language. Section IV provides a description of
general workflow automation, explains our workflow modeling
language, and details how this language was made executable
in the ALC Toolchain. This is followed by a set of illustrative
examples in Section V. Finally, we identify areas for future
work and give concluding remarks in Sections VI and VII
respectively.



II. RELATED RESEARCH

Within each engineering discipline, common domain-
specific tasks are often automated with appropriate tool sup-
port. For example, TensorFlow-eXtended (TFX) [2] provides
an extensible platform for generic Machine Learning (ML)
applications. The usual ML training process is divided into a 9-
step pipeline consisting of smaller individual actions including
training data transformation, model learning, and deployment
of trained models to production environments. Each step of
this pipeline can be customized to fit specific needs before
deployment and execution. TFX also automates some common
ML processes such as hyper-parameter optimization during
model training.

Some platforms take this a step further by automating tasks
which have traditionally required multi-disciplinary expertise.
The Functional Modeling Compiler (FMC) [3] is one such ap-
proach which uses a high-level model specifying the intended
function of a CPS to generate multiple potential architectures
which implement that functionality. These architecture models
are composed of component models from multiple engineering
domains (eg. electrical, mechanical, chemical) and can be
executed in an appropriate simulator. This allows developers to
quickly compare alternative system architectures and analyze
how design decisions in one engineering domain will affect
system-level performance.

CPS development platforms facilitate multi-disciplinary de-
velopment and often integrate multiple tools with varying
levels of automation. INTO-CPS [4] is one such platform
built on top of five particular development tools for system
modeling, discrete and continuous model analysis, simulation,
and test automation. INTO-CPS is intended for use across
many CPS domains and provides examples in several, includ-
ing automotive, railways, agriculture and building automation.
Additionally, INTO-CPS includes recommended development
workflows and automates tracking of model provenance and
requirements traceability. However, configuration and execu-
tion of each operation in the workflow is a manual process.
Kulkarni et al. present another framework tailored for smart
manufacturing applications [5] which provides tools for the
development and refinement of manufacturing models. The
authors combine both analytical and data-driven models to
facilitate process analysis by domain experts. The framework
also integrates and automates execution of several additional li-
braries including the OpenMDAO Python optimization library
[6].

Business Process Model and Notation (BPMN) [7] is an
existing modeling standard for representing generic busi-
ness processes and serves as a general workflow description
language. BPMN models typically contain natural language
descriptions of each operation in a particular process. Ex-
ecution engines exist for automating the operations in a
BPMN model, but the generic nature of BPMN means very
little info required for task execution is contained within the
process model. Typically, the individual tools and operations
required to complete a process model must be automated

independently, then provide a suitable interface to the BPMN
execution engine. Similarly, Maier et al. propose a workflow
automation system specifically for CPSs based on a new
Project Worker approach [8]. This approach allows develop-
ers to package common, repeatable operations into snippets
known as Engineering Automation Objects. Additionally, data
flowing between workflow operations is identified with Virtual
Addresses instead of physical addresses which allows data ref-
erences to be independent of the underlying storage mediums
and tool interfaces. The authors provide conceptual examples
and identify potential benefits of this approach, but do not
implement the proposed workflow automation system in order
to validate these benefits. In [9], Mustafiz et al. introduce the
Formalism Transformation Graph (FTG) framework for multi-
paradigm modeling. The FTG describes the various DSMLs
available and how they are related to one another through
model transformations which may be automated or manual.
This approach also includes a Process Model (PM) which
describes development processes as graph of interconnected
model artifacts and activities. Artifacts are used as input to
or output from activities, and activities may be one of the
model transformations described in the FTG or other external
operations.

III. ALC TOOLCHAIN

The ALC Toolchain supports multi-disciplinary CPS devel-
opment by providing an environment with several domain-
specific modeling languages and an integrated set of tools.
The toolchain is specifically tailored for systems that utilize
LECs and supports development workflows like the one shown
in Figure 1. In order to promote reproducibility and maintain
data provenance, all system models are stored in a version-
controlled database and management of all relevant data
and generated artifacts is automated. The toolchain is built
on the WebGME infrastructure [10] which provides a web-
based, collaborative modeling environment where changes are
automatically and immediately propagated to all active users,
not unlike in Google Docs 1.

The typical development process in the ALC Toolchain,
shown in Figure 1, consists of operations divided into two
classes: tasks and activities. Tasks are individual actions that
require domain-specific knowledge and typically involve the
configuration of models or analysis of results. Tasks are shown
as grey parallelograms in Figure 1 with examples including
creation of a component library, design of an experiment,
or evaluation of LEC performance. These actions may be
performed manually by a system developer or automated with
scripts where possible. Once a model has been configured, it
can be deployed as an activity and executed using domain-
specific tools. For example, an LEC Training model contains
all necessary information to train an Artificial Neural Network
using a machine learning library such as TensorFlow [11]
or PyTorch [12]. Activities are shown as yellow, rounded
rectangles in Figure 1 and include common operations such

1https://docs.google.com
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Fig. 1. ALC Toolchain development workflow.

as data generation, LEC training, and system verification.
Additionally, categories are used to group related tasks and
activities together. System modeling, LEC construction, and
verification & assurance are the three primary categories in
the ALC Toolchain, shown as blue blocks in Figure 1.

ALC provides automation for execution of individual activ-
ities through models which describe the desired operations
and contain all the information necessary to initialize and
deploy the activity. By default, support is included for several
common CPS development tasks, particularly those related to
ML operations. This automation is designed to be extensible so
that new classes of models with different execution semantics
can be added in a straightforward manner. Previously, all op-
erations required between execution of activities (eg. passing
generated artifacts between models, changing configuration
parameters, and starting model execution) were performed
manually. These tasks are time consuming to perform and
require the user to regularly check if one model execution
has completed such that the next execution can be started.
The introduction of workflow models into the ALC Toolchain
allows developers to automate these tasks and significantly
reduce their workload, as discussed in the following sections.

In the remaining sections of this paper, certain modeling
and documentation details have been omitted due to space con-
straints including the ALC and workflow DSML meta-models,
certain details from the provided workflow examples, and the
workflow API documentation. However, all of these resources

are publicly available on the ALC Toolchain website2.

IV. WORKFLOW AUTOMATION

Merriam-Webster defines a workflow as ”the sequence of
steps involved in moving from the beginning to the end of a
working process” [13]. In the context of CPS development,
workflow steps often include complex tasks such as data
generation and analysis, performance evaluation, and system-
level verification among many others. Typically, operations
in a workflow are dependent on results from one or more
of the preceding steps. Operations which share the same set
of dependencies may be performed in parallel. Additionally,
many workflows are iterative processes which are repeated
until a predefined threshold is met. To capture these depen-
dencies between operations, workflows are often represented
as directed graphs.

Existing CPS development environments usually provide
some level of automation for the deployment and execution of
individual domain-specific tools, and may enforce certain tool
input and output rules to improve the process of interfacing
between tools. However, CPS development workflows usually
rely on several interconnected tools with various data trans-
formations between tools. This required interfacing between
tools is often automated for a few selected workflows with
an appropriate toolchain, or automated on a case-by-case
basis in an ad-hoc manner with a general purpose scripting

2https://cps-vo.org/group/ALC
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language. While these scripting languages are powerful and
generic, creating process automation scripts with them is a
time-consuming process which often results in scripts that
are fragile in use and not easy to generalize. Additionally,
objects and activities within these scripts are not linked to
system models or artifacts, and the process of manually
synchronizing references as development progresses quickly
becomes a significant burden.

To address this problem, we introduce a new DSML tailored
for the creation and execution of CPS development workflows
and provide one implementation of this language in the ALC
Toolchain. Within ALC, individual tools are integrated into
the toolchain as activities. An integrated activity must be able
to interpret artifacts used as inputs, often results produced
from other activities, and must produce output artifacts which
conform to a standard set of rules. The workflow DSML allows
developers to quickly chain multiple activities together to
model their typical development processes in a structured man-
ner and deploy these processes for execution. This approach
is intended to bring the benefits of model-based engineering
to CPS workflow automation and is explained in more detail
in the following sections.

A. Modeling Language

The Workflow DSML within ALC consists of the eight
primary modeling objects shown in Figure 2. Construction
of a workflow model starts with the creation of a job block,
which describes one step in the workflow process and contains
exactly one activities block. Within ALC, any executable
model can be considered an activity, and execution typically
involves the use of domain-specific tools which operate on the
input model and produce a result. The activities block within
a workflow job specifies which models should be executed
during this job, and contains links to one or more exist-
ing activity models. Each individual activity model usually
needs to be initialized before execution which can be done
with an appropriately configured initializer block. Activity
initialization is often dependent on the results of previous
jobs in the workflow, which can be accessed through one
or more input ports. The results of each activity contained

within a job can be made available to later jobs through
output ports. Finally, iteration blocks can be used to guide
the execution flow of the model by specifying where and how
the flow should be interrupted to perform additional iterations.
These blocks contain a script which examines any of the
outputs from previous jobs, determines if additional iterations
of the workflow should be performed, and updates the activity
models as needed for the next iteration.

A complete workflow model, like the examples shown in
Figures 4 and 6, consists of one or more jobs connected in
a directed graph where each edge is one of two types. Data
flow edges are depicted as black lines and represent the flow
of generated artifacts from one workflow job into another job.
These edges are always directed from an output port to an
input port. Process flow edges direct the execution flow of the
workflow and may be one of two types. Check edges, shown
as blue lines, indicate where the normal flow of the workflow
should be interrupted to check if any iteration is needed. If the
script contained within the iteration block, shown as a grey
diamond, indicates that iteration is desired then repeat edges,
shown as red lines, indicate where the next iteration should
begin. This structured, model-based approach to workflow
creation allows developers to quickly automate their usual
development processes in a generic, reusable, and extensible
manner. The example model in Figure 6 corresponds to one
specific instance of the general LEC Construction phase of
the ALC development workflow shown in Figure 1 and is
discussed in more detail in Section V-C. A meta-model for
the workflow DSML described above was created in the
ALC Toolchain using the tools provided by the WebGME
environment. Due to space constraints, the meta-model has
been omitted here, but is available to explore on the ALC
Toolchain website. Accessing this model requires registering
a user account, clicking the large ”LAUNCH” button, then
selecting the ”ALC Meta” project.

B. Implementation

We have created a Workflow Executor within the ALC
Toolchain which handles deployment, execution, and data
management for workflow models. Scripts contained in itera-
tion blocks which guide looping within the workflow are spec-
ified in the Python3 programming language and are invoked on
each iteration of their corresponding loop. The user-specified
behavioral code within these scripts can be arbitrarily complex.
An API is provided for interacting with models in the ALC
Toolchain including ability to:

• Access all data produced by previously executed jobs in
the workflow.

• Persist selected data across loop iterations.
• Update any model parameters for future activities in the

workflow.
The workflow executor is implemented on top of the Gra-

dle4 build automation system. Gradle is intended for software

3https://www.python.org/
4https://gradle.org/



Fig. 3. Workflow status visualization.

build tasks such as compilation, packaging, and deployment.
However, it provides a Kotlin5 based build script language
and is easily extensible for other more specific purposes. In
particular, Gradle provides well-defined, easy to use interfaces
which are can be integrated with other platforms including
the WebGME environment that the ALC Toolchain is built
upon. When a workflow model is executed, the executor first
extracts all relevant execution information from the model and
stores this information in a JavaScript Object Notation (JSON)
file. This JSON file is then interpreted by the Gradle build
script, which generates the necessary task graph to carry out
the workflow dynamically based on the constraints and de-
pendencies specified JSON. The Gradle engine is well-suited
to executing the workflow as it provides built-in functionality
for:

• dependencies to be expressed between the tasks, ensuring
that they are executed in the proper order

• detection, reporting of, and termination of the workflow
due to any errors during execution

• determining if a task should be skipped, e.g. in the
case that a previous execution of the workflow already
executed the task, and its output need not be regenerated.

Gradle is only capable of generating a Directed Acyclic
Graph (DAG) of tasks, i.e. no loops can be in the task
dependency graph. Therefore, to implement looping in the
Workflow DSML, a separate process is executed that contains
a simple loop. Each iteration of the loop executes a Gradle
process to build and execute a workflow task DAG for that
specific iteration. The loop carries information forward from
the previous iteration to the next so the appropriate DAG for
the workflow is executed on each iteration.

Once a workflow execution begins, the executor tracks
the progress of each job in the workflow and provides this
information back to the user with a status table like the one
shown in Figure 3. If a workflow job encounters an error
during execution, the status table will be updated to reflect
this. Once an error has been identified and fixed, then the
workflow can be resumed from the point where the failure
occurred. This way, none of the preceding jobs which finished
successfully before the error will be re-executed.

5https://kotlinlang.org/

V. EXAMPLES

The following sections present several examples showing
how common workflows used in ALC can be automated with
appropriate workflow models. All examples are in context
of an Unmanned Underwater Vehicle (UUV) tasked with
following a pipeline on the seafloor using two LECs along
with several non-LEC components. Both LECs are neural
network based, but use different training algorithms provided
by different machine learning libraries. The Perception LEC
performs image segmentation on input sonar images and
produces a segmented image where every pixel in the original
image has been assigned to an object class (eg. pipeline,
seafloor, obstacle). This is accomplished with a Convolutional
Neural Network (CNN) based on the SegNet [14] architecture
and trained with a supervised learning approach using the
PyTorch [12] library. The Control LEC must then use this
information, as well as additional vehicle state information,
to output appropriate control commands for the UUV. The
control LEC is a two-layer, feed-forward network trained using
reinforcement learning techniques provided by the Tensorforce
[15] library. For a detailed introduction to supervised and
reinforcement learning techniques see [16] and [17] respec-
tively. Additionally, each of the example models shown in the
following sections can be explored in full detail on the ALC
Toolchain website.

A. Reinforcement Learning & Evaluation

The first example workflow involves training the con-
trol LEC over many simulated, randomly-generated scenarios
known as episodes. During each episode, the LEC explores
the possible action space while using the provided reward
function to observe which control actions produce desirable
results for the UUV system. Network weights are updated
accordingly, and this process continues for a set number of
episodes. Once the training process is completed, the LEC
can be deployed back to the simulator in a non-learning mode
(ie. network weights are no longer updated) for system-level
evaluation. During this job, the control LEC is evaluated based
on system-level performance metrics of the UUV instead of
the component-level metric provided by the reward function.
Evaluation jobs are often configured as a campaign where the
same evaluation procedure is repeated in a variety of scenarios
which can be provided as a specific set or generated with an
appropriate scenario description language such as Scenic [18].

This training and evaluation process can easily be modeled
with our workflow modeling language as shown in the top
of Figure 4. The training process is captured in the ”RL
Exploration” block which provides a trained LEC output.
This output is fed into the ”LEC Evaluation” block and
used to initialize the evaluation models. The result of each
evaluation activity is also made available, but is not used in
this workflow. While the ALC Toolchain provides automation
of each individual activity, previously no automation between
activities was available and all data passing and configuration
between models required manual configuration. This particular
workflow model was created by an experienced ALC user in



Fig. 4. Workflow models for example 1 (top) and 2 (bottom). The ”HyperParameter Search” block in example 2 contains a script, shown with a dotted outline
in the figure.

about 15 minutes, but may take hours or days to execute
depending on the number of learning episodes, evaluation
scenarios, and available computational resources. Additionally,
the status visualizer for this example is shown in Figure
3. In this case, the ”RL Exploration” job had completed
successfully, indicated by the green ”Finished” status, and
the ”LEC Evaluation” job was pending deployment to an
execution server.

B. Hyperparameter Optimization

The next example involves automating hyperparameter op-
timization for the supervised training of the perception LEC, a
common process in the machine learning field. The goal of this
process is to find a set of training configuration parameters,
known as hyperparameters, which results in an LEC with the
minimal total loss when evaluated against a particular set of
test data. While many common loss functions are available,
we use a standard mean-squared-error loss function in this
example. Common optimization search algorithms include grid
search, random search [19], and Bayesian optimization [20].
For the purpose of this example we automate a simple grid
search over two particular hyperparameters, gradient-descent
optimizer and number of epochs, but more advanced search
algorithms can be automated in a similar fashion.

Modeling the hyperparameter optimization process requires
introducing the iteration concept as shown in the bottom
left of Figure 4. In this workflow, there is only one job
named ”SL Model Training” which initializes the training
activity model with labeled data sets before executing the
training process for the perception LEC. The trained LEC is
produced as an output, but is unused in this workflow. This

job is then connected to a ”Hyperparameter Search” iteration
block, shown in an exploded view, containing the script which
implements the iteration logic. In this case, each iteration
will repeat the training process with one of three learning
optimizers: Stochastic Gradient Descent (SGD) [21], Adam
[22], or RMSprop [23]. Additionally, each optimizer will be
run for 2, 4, 6, and 8 training epochs to evaluate how quickly
each optimizer converges to the minimal loss. This results in
a 3 by 4 search grid for a total of 12 training iterations, and
the final loss value of each combination of hyperparameters
is shown in Figure 5. In this case, both the RMSprop and
Adam optimizers converge much faster than the standard SGD
technique, but the RMSprop optimizer has a large jump in
error rate when trained for 4 epochs. This could be due to other
training parameters which were not considered in this test,
such as a learning rate that is too large. Increasing the number
of learning parameters used in our workflow grid search could
help confirm this hypothesis, but was out of scope for this
paper. Once all 12 iterations are completed, the workflow will
terminate automatically. Similarly to the previous model, this
workflow model required less than an hour of developer time
to construct, but may require many computational hours to
execute all 12 LEC training cycles. Without the workflow
DSML and executor, the developer would have to regularly
monitor for completion of each training execution, then man-
ually update the training activity model with the next set of
network hyperparameters and launch the next iteration of the
grid search. Manual monitoring for job completion is tedious
and typically results in available computing hardware sitting
idle until the developer notices job completion. Additionally,



Number of Epochs

2 4 6 8

SGD 1.057 0.996 0.951 0.904

Adam 0.057 0.032 0.022 0.011

RMSProp 0.147 2.485 0.010 0.010

Learning
Optimizer

Fig. 5. Perception LEC loss after training with various hyperparameters.
Large loss values are colored red while small loss values are colored green.

manually updating model parameters and references for this
relatively simple example is a quick, straight-forward process,
but quickly becomes difficult as the complexity of the work-
flow increases.

C. ALC Development Workflow

The last example demonstrates automation for the full
”LEC Construction” portion of the ALC development work-
flow shown in Figure 1. This process consists of generating
labeled training data through simulation of the UUV system
in a variety of scenarios. For this system, variations between
scenarios include different configurations of the pipeline on
the seafloor, randomized starting location of the UUV, and
randomly generated obstacles in the path of the vehicle among
others. The collected data can then be passed to a supervised
learning model in order to train the perception LEC. At this
point, the developer may chose to perform a hyperparameter
search to optimize the performance of the LEC against an
evaluation data set. Once an optimal training configuration
has been identified, both the training data set and the trained
LEC are sent to an assurance monitor training job. Assurance
monitors are software components which act in parallel to an
LEC and provide a confidence metric for each output produced
by that LEC. This metric is based on the similarity between
a new, previously unseen input and all inputs contained in the
data set used to train the particular LEC. This technique is
known as Inductive Conformal Prediction [24], and there are
a number of algorithms for efficiently computing confidence
metrics. In this example, we use one particular algorithm
[25] based on Support Vector Data Description [26]. Finally,
an evaluation model can be configured to use the trained
perception LEC and corresponding assurance monitor as part
of the complete UUV system. If the LEC shows unsatisfactory
performance during a particular evaluation scenario, then the
developer may chose to add this scenario to the original data
generation step and repeat the process.

Figure 6 shows how this full LEC construction workflow
can be modeled. As with the previous two examples, each
type of activity is contained in a workflow job block with
appropriate input and output ports to control the flow of
generated artifacts. The last job in the workflow, LEC Evalua-
tion, is depicted in an exploded view showing how individual
activity models can be selected for this job. In this case,
only a single evaluation model named ”Dep AM Tracking”
has been selected to run. However, this model is configured

as a campaign so that several simulated scenarios will be
run to evaluate the trained LEC. Additionally, this workflow
model contains two loops: an inner loop for hyperparameter
optimization and an outer loop for iterating the entire process
with additional training scenarios. The inner loop follows the
same procedure outlined in Section V-B to optimize the LEC
training procedure. The outer loop contains a script which
identifies any evaluation scenarios which resulted in unsatis-
factory performance and updates the first workflow job, ”Data
Collection”, to include these specific scenarios in the training
data set. Also note that the assurance monitor training job is
dependent upon the trained LEC produced by the hyperparam-
eter search loop. Because of this dependency, the assurance
monitor job will not run until after the entire hyperparameter
search has completed. Since the hyperparameter search is
repeated in full on every iteration of the outer loop, this
workflow typically executes many computationally intensive
LEC training activities. As with the previous examples, this
workflow model was constructed and deployed in less than
an hour of developer time, but required several computational
hours to complete.

VI. FUTURE WORK

We have identified several opportunities for future improve-
ments in both the workflow language itself as well as the
implementation of the language within the ALC Toolchain.
First, the workflow language does not allow general branching
operations, which limits their expressiveness. While looping is
supported, this can be viewed as a special case of more generic
branching. Additionally, the language does not allow for
hierarchical construction of workflows. That is, one workflow
model cannot contain another workflow model. Hierarchical
models can be useful in many scenarios and can promote
model reuse. For instance, the hyperparameter optimization
loop in the final example presented in Section V-C could have
been replaced by the workflow model shown in the bottom of
Figure 4. Due to this current limitation, the optimization loop
model had to be recreated for both examples. We intend to add
both general branching and hierarchical construction features
to the workflow DSML.

Within the ALC Toolchain, some support is provided for
the debugging of activities including the ability to quickly
view all execution logs and perform interactive executions
with Jupyter notebooks6. However, debugging capabilities for
the workflow executor are limited and require understanding
of the executor internals. In particular, there is no straight-
forward way of debugging the user-provided iteration scripts
which guide the execution of the workflow. We plan to add
additional debugging capabilities to allow typical developers
to troubleshoot models without detailed understanding of the
executor internals. Next, our current implementation of the
Workflow Executor does not support any parallel execution of
job iterations within loops. For example, each training session
of the hyperparameter optimization described in Section V-B

6https://jupyter.org/
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Fig. 6. Workflow model for example 3. The ”LEC Evaluation” workflow job includes an exploded view of the internal model.

could be executed in parallel since the execution of one
iteration is not dependent on the results from the previous
iteration. However, this type of parallelization would not apply
to loops with dependencies between each iteration such as
the outer loop of the development cycle described in Section
V-C. Additionally, a primary goal of the ALC Toolchain is
to assist developers in providing system-level assurance for
CPSs. With this in mind, we intend to integrate our workflow
models more tightly with existing tools for construction and
evaluation of assurance cases. We expect this would reduce
both the burden of manually maintaining these assurance cases
and the time required to identify system-level properties after
design iterations. Finally, the current workflow executor is
able to catch error conditions and report them back to the
user. However, these errors must be corrected manually as
the executor does not have any fault mitigation or recovery
capabilities. It is often the case that a developer will not
be able to address such issues until hours or days after the
error occurred, resulting in wasted computer time. We plan
to explore this functionality in future work to alleviate this
problem.

VII. CONCLUSION

Modern CPS design requires cross-discipline expertise and
involves many heterogeneous system models. These models
often include domain-specific tooling for various tasks such as
performance analysis, code generation, and system deployment
among others. Automation of these tools has typically been
limited to execution of individual tasks or to a limited set
of common discipline processes. To address this problem,
we have introduced a DSML for describing CPS workflows
and provided an executive engine for automated execution
of these workflows. This, along with the existing automation
capabilities provided by the ALC toolchain, helps to bring
the full benefits of model-based engineering to workflow
automation.
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