
Augmenting Learning Components for Safety in
Resource Constrained Autonomous Robots

Shreyas Ramakrishna∗, Abhishek Dubey∗, Matthew P Burruss∗, Charles Hartsell∗
Nagabhushan Mahadevan∗, Saideep Nannapaneni†, Aron Laszka‡, Gabor Karsai∗

∗Vanderbilt University
†Wichita State University
‡University of Houston

Abstract—Learning enabled components (LECs) trained us-
ing data-driven algorithms are increasingly being used in au-
tonomous robots commonly found in factories, hospitals, and
educational laboratories. However, these LECs do not provide
any safety guarantees, and testing them is challenging. In this
paper, we introduce a framework that performs weighted simplex
strategy based supervised safety control, resource management
and confidence estimation of autonomous robots. Specifically, we
describe two weighted simplex strategies: (a) simple weighted
simplex strategy (SW-Simplex) that computes a weighted con-
troller output by comparing the decisions between a safety
supervisor and an LEC, and (b) a context-sensitive weighted
simplex strategy (CSW-Simplex) that computes a context-aware
weighted controller output. We use reinforcement learning to
learn the contextual weights. We also introduce a system monitor
that uses the current state information and a Bayesian network
model learned from past data to estimate the probability of the
robotic system staying in the safe working region. To aid resource
constrained robots in performing complex computations of these
weighted simplex strategies, we describe a resource manager
that offloads tasks to an available fog nodes. The paper also
describes a hardware testbed called DeepNNCar, which is a low
cost resource-constrained RC car, built to perform autonomous
driving. Using the hardware, we show that both SW-Simplex and
CSW-Simplex have 40% and 60% fewer safety violations, while
demonstrating higher optimized speed during indoor driving
(∼ 0.40m/s) than the original system (using only LECs).

Index Terms—Autonomous Robots, LEC, Convolutional Neu-
ral Networks, Simplex Architecture, Reinforcement Learning.

I. INTRODUCTION

Autonomous systems are ubiquitously being used in trans-

portation (self-driving cars [1], [2], buses), manufacturing

(robotic arms, service robots), agriculture, social care, and

search-and-rescue disaster management for their ability to

accomplish tasks independently or with minimal human su-

pervision. Techniques for developing autonomous systems

include human encoded control and reinforcement learning.

Reinforcement learning [3] is a powerful data-driven strat-

egy in which the learning occurs in a closed loop agent-

environment interactions whereas the other techniques require

human involvement. In the presence of huge amounts of

training data, some autonomous systems have proven to sur-

pass human experts in performance, for example, Alpha Go

Zero [4]. End-to-End (e2e) learning [5] is a key framework

for realizing autonomy in robots, which makes use of deep

learning models. For example, NVIDIA’s DAVE-II [1] and

ALVINN [2] use Convolutional Neural Networks (CNN) to

design the controller for autonomous cars. A combination of

reinforcement learning and deep learning approaches provide a

framework to transition from model-based system components

to data-driven Learning-Enabled Components (LECs).

While the use of data-driven LECs provides a paradigm

shift in the ability to create adaptive systems, it also presents

challenges in testing and assurance. For example, there are no

established analogues to path coverage-based testing mecha-

nisms for components designed with neural networks. There

has been ongoing research in designing tools for automated

testing [6], [7] of Deep Neural Network driven systems;

however, they are limited by the exhaustive test case scenarios

they support, and hence, may not be able to detect all the

edge cases. In addition, existing verification tools [8] can only

handle some types of activation functions, and Neural Network

of limited complexity.

The key challenges in establishing confidence in data-driven

LEC systems are: (1) Operating in unknown contexts [9]

e.g., search-and-rescue robots, and (2) the limited availability

of training data which reduces the confidence in the trained

LECs.

Safety-critical Cyber Physical Systems (CPS) like aircraft

(Boeing 777 [10]), unmanned aerial vehicles (UAV) [11],

and mission critical ground rovers [12] are augmented with

Simplex Architectures [10] to increase system assurance. This

architectural pattern allows the integration of safety super-

visors to aid the control decisions of the high performance

unverified controller.

However, Simplex Architectures do not provide a method

to combine two unverified controllers. Applying a simplex

strategy in such a scenario may not improve the systems

safety (for such scenarios we introduce weighted simplex

strategies). Additionally, it does not consider the different

operational modes and contexts of the working environment

in performing the arbitration, which could be crucial for

the systems performance. Biswas, Gautam, et al. [13] have

shown that mode detection is a crucial problem and data-

driven anomaly detection methods should be context sensitive.

They also do not provide any confidence metric that can be

used to evaluate the decisions of the LEC if safety violations

occur. Such diagnostic capabilities are crucial in safety-critical

systems. We seek to address the following research questions:

108

2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)

978-1-7281-0151-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ISORC.2019.00032

Symbol Description

SL Steering PWM value of DeepNNCar using LEC

SS Steering PWM value of DeepNNCar using Safety Supervisor

SSA Steering PWM value using Weighted Simplex Strategy

TR Inference pipeline time of DeepNNCar using CSW-Simplex

V Current speed of DeepNNCar

VMAX Max Saturated speed during task offload

VSET Set speed computed by CSW-Simplex

WL Ensemble weight given to LEC.

WS Ensemble weight given to Safety Supervisor.

WSET Ensemble weights {WL,WS} computed by CSW-Simplex

TSW Preset Threshold used by SW-Simplex

STOP Command from Safety Supervisor during safety violations

M̂ Estimated state of the track segment

t̂ Deviation of car from the track center

I Image captured by the front facing camera

TABLE I: List of Symbols

1) Can we use an online simplex supervisor that can learn

from past actions (experience) and augment the control

actions taken by the LEC to improve safety?

2) Can we provide a confidence metric about the safety of

current actions at system level in real-time, given all the

past actions?

Our Contributions: To address the above questions, we

describe: (1) an adaptive framework that allows the integration

of safety supervisors and weighted simplex strategies, and

performs active switching between them based on the perfor-

mance of the system; (2) implement and evaluate two weighted

simplex strategies that allow us to encode domain knowledge

(e.g. the operating environment or actions to be taken in par-

ticular operating conditions). Using these strategies we show

an improvement in the safety guarantees and performance of

the system; (3) implement a system monitor which uses the

current state information and a Bayesian network model to

estimate a probability of the robotic system remaining in the

safe working region; and (4) design a resource management

and task offloading strategy to compensate for the increased

computations of the weighted simplex strategies.

Outline: Section II describes the test environment, the

controllers, and safety algorithms employed by the system.

Section III introduces different weighted simplex strategies.

Section IV describes a monitor that computes the probability

of the robotic system to remain in the safe working region.

Section V illustrates resource management and system integra-

tion, and Section VI evaluates the weighted simplex strategies

and resource management. Section VII reviews related work,

and finally, Section VIII presents our conclusion. The symbols

used in the paper are described in Table I.

II. DEEPNNCAR: TESTBED FOR AUTONOMOUS DRIVING

DeepNNCar1 (in Figure 1) is built upon the chassis of

Traxxas Slash 2WD 1/10 Scale RC car. The RC car has two

on-board motors, a servomotor for steering control, and a Titan

12T 550 motor for motive force, which are powered by a

1Build instructions, source code, datasets, bill of materials, and videos of
DeepNNCar can be found at: https://github.com/scope-lab-vu/deep-nn-car

Fig. 1: DeepNNCar, a resource constrained autonomous robot used in our
experiments.

8.4volts NiMH battery. Raspberry Pi 3 (RPi3) is the onboard

computing unit which performs all the required computations

and interfaces with the sensors. RPi3 reserves two GPIO pins

to generate Pulse Width Modulation (PWM) signals that are

used to control the motors of the car. For the servomotor,

a duty cycle range of (10, 20) corresponds to a continuous

steering angle of (-30°, 30°), and for the Titan 12T 550

motor, we operate within the PWM range of (15, 15.8), which

corresponds to a vehicle speed range of (0, 1) m/s.

A. Sensors

A USB webcam is attached to the RPi3 to capture images

at 30 FPS with a resolution of 320 × 240 × 3 (320x240

RGB pixels). During autonomous driving, these images are

used by the onboard controllers to compute desired steering

angle. A slot-type IR opto-coupler speed sensor2 is attached

to the chassis near the rear wheel and counts revolutions of

the wheel. The speed of the car is calculated based on the

frequency of revolutions and is used to estimate the 2D relative

position of the car (shown in Figure 2). During data collection

camera images, vehicle speed, and steering angle are stored

on a USB drive.

B. LEC in DeepNNCar

End-to-End learning is a perception based control approach

that uses supervised learning to directly compute the control

action. Is widely used because of its conceptual simplicity and

computationally efficient approach. The e2e learning approach

in fully autonomous cars was first demonstrated by ALVINN

[2] in 1989, and was recently extended by NVIDIA through

their self-driving car, DAVE-II [1].

In the current implementation, the hardware uses e2e learn-

ing which implements a modified version of DAVE-II to

predict steering (SL). The original DAVE-II CNN [1] takes

an image (I) as input and predicts SL as the output without

considering the impact of speed (V) on SL.

2We refer to this sensor as opto-coupler in the rest of the paper

109

Fig. 2: (a) Runtime plot: shows runtime speed, steering, and position on track
of DeepNNCar as displayed on a fog node, (b) Track1: on which different
weighted simplex strategies were trained and tested; (c) and (d) Other tracks:
used to test the trained controllers, and strategies. The tracks were built indoor
in our laboratory using 10’ x 12’ blue tarps.

Modified DAVE-II CNN has five convolutional layers

and seven fully connected layers. It takes an image (I) with

resolution (66x200 RGB pixels) and vehicle speed (V) as

inputs and predicts SL as the output. The model is trained with

6000 images collected from Track1 and Track2 (see Figure 2).

The modification of the CNN is required for two reasons.

First, the steering and speed are coupled, thus any change

in the speed will impact the steering performance. We also

observed that the modified CNN takes wider trajectories at

turns compared to the original one. Second, since the quality of

the captured image deteriorates as speed increases, additional

information is required for the CNN to predict correct steering

values.

C. Safety Supervisor

The Safety Supervisor (SS) is designed using classical

image processing algorithms. It performs lane detection (LD).

The LD algorithm is implemented in OpenCV and provides

labeling information (straight, right, left, or out of track) for

the track segment (M̂) in which the car resides. The LD

algorithm was tested using a dataset of 3000 images and

it correctly labeled the track segments with an accuracy of

89.6%.

Lane Detection: The LD algorithm performs the following

operations sequentially on a 200x66 gray scale image.

• Gaussian blur and white masking: A 3x3 Gaussian kernel

is convolved across the image to reduce the noise. Next,

all pixels except those within a specified range (e.g., [215,

255]) are masked, thus differentiating the track lanes from

the foreground.

• Canny edge detection: The algorithm first computes a gra-

dient of pixel intensities. An upper and lower threshold of

these gradients is defined at compile time. A comparison

of the pixel gradients to these thresholds in addition to

hysteresis (suppress all weak and unconnected edges) can

determine if a pixel is an edge or not. The edges reveal the

boundary of the lanes.

• Region of interest (ROI) selection: The image is divided

into two similar 30x66 regions of interest to capture the

left and right lane respectively.

• Hough line transform: A Hough line transform is applied

to each ROI to detect the existence of a lane based on the

results of the canny edge detection algorithm. Using this

information we determine a label for the track segment.

For every estimate of the track segment (M̂) we associate

a discrete steering SS : if LD detects the car in the straight

segment, SS = 0◦; if LD detects the car in the left segment,

SS = −30◦; and if LD detects the car in the right segment,

SS = 30◦.
Speed control in LEC and SS is initially set by a human

supervisor, it can be varied or controlled using either the

constant throttle mode or the PID controller provided by the

DeepNNCar.

Goals of DeepNNCar: (1) Minimize the soft safety vi-

olations, i.e. the number of times the car crosses the track

boundary (safety requirement), and (2) optimize the speed.

Below we discuss the simplex strategies which uses the LEC

and SS, to achieve the two goals.

III. WEIGHTED SIMPLEX STRATEGIES FOR DEEPNNCAR

Simplex architectures [10] have been used before to ensure

the safe operation of a high performance but unverified con-

troller. It works by integrating a high assurance controller in

the system, which activates the high assurance (SS) controller

whenever the high performance controller is on the verge of

jeopardizing the safety of the system.

However, as shown by our experiments (see Figure 3) the SS

does not always perform in a high assurance manner. The SS

controller is safer in curved regions while the LEC is safer in

the straight region. It is hard to design a single controller that

is safe across all modes of the track. In such scenarios applying

the classical Simplex Architectures may not guarantee safety.

However, it might be possible to improve the safe operation if

we take an ensemble approach [14] and utilize the weighted

output from the two controllers. We call this approach as the

“Weighted Simplex Strategy”. The weighted controller output

is shown in Equation 1.

SSA = WL × SL +WS × SS (1)

In order to optimize for the speed (V) along with the

steering, we update the current speed of the system. The V can

be incremented or decremented by (δV) based on the systems

current state, and position on the track.

110

0.25 0.35 0.45 0.55 0.65

0

3

6

9

12

speed m/s

O
u
t
o
f
T
ra
ck

O
cc

u
rr
en

ce
s

SS LEC SW-Simplex CSW-Simplex

Fig. 3: The DeepNNCar performs fewer safety violations when combined with
the CSW-Simplex strategy. (a) SS: driving only with the safety supervisor, (b)
LEC: driving only with the modified Dave-II model, (c) SW-Simplex, and (d)
CSW-Simplex. The horizontal axis shows the different speeds of the car during
the experiment.

V = V ± δV (2)

Applying the weighted simplex strategy to our system could

(1) improves the safety of the system, while optimizing for

speed (see Figure 3), and (2) allows us to integrate context-

sensitive weights to compute the systems output. Biswas et

al [13] have addressed the importance of mode and context-

sensitive information in data-driven anomaly detection meth-

ods. Also, context-aware machine learning approaches have

been found effective in different applications of face recogni-

tion [15], speech recognition, and query classification [16].

With the goal of finding context-sensitive weights and

optimal speed, we describe two different weighted simplex

strategies: (1) simple weighted simplex, and (2) context-

sensitive weighted simplex.

A. Simple Weighted Simplex Strategy (SW-Simplex)

To integrate the concept of weighted sum into our system

we extend the concept introduced by Fridman et. al. called the

“Arguing Machines” [17] . In our approach, we use the LEC

and SS as the two controllers, and if the difference between

their predicted steering values is higher than a predefined

threshold (TSW), then the steering is computed by Equation 1,

with the weights being WL=0.8, WS=0.2 (shown in Equation

3). However, if the differences between the predicted steering

values are lower than the TSW , then the LEC action is chosen

to drive the system.

SSA = 0.8× SL + 0.2× SS (3)

The speed of the system speed (V) is also computed based

on the argument between the controllers. If there is a disagree-

ment among the controllers predictions, then V is decremented

using Equation 2. However, if there is no disagreement, then

V is incremented. Disagreement among the controllers is an

important factor to vary the speed, as it indicate if the two

controllers are in agreement.

The chosen ensemble weights (WL, WS), threshold (TSW),

and change in speed (δV) are track specific and were found

through trial and error experimental runs on Track1 (in Figure

2). The fixed weights are trying to capture the performance

of the controller for the specific shape of track. To start, a

reasonable number was chosen for each parameter and was

later tuned according to the speed and safety performance on

Fig. 4: Agent-Environment interactions in the RL-Actor (Figure 9) of DeepN-
NCar.

the track. The tuning of weights was stopped when the safety

violations did not reduce any further, and this was chosen as

the optimal weights.

B. Context-Sensitive Weighted Simplex Strategy (CSW-
Simplex)

The SW-Simplex used a weight tuning method based on

trial and error experimental runs. After the tuning, the optimal

weights were fixed, even though it captured the controller’s

performance specific to the Track1(in Figure 2). However, if

we could involve some more context information like track

segments (straight, left, right, and out), then the weights could

probably be dynamically adjusted. In order to find optimal

weights (WL, WS) and speed (V), that involves contextual

information, we use Reinforcement Learning (RL). In this

work, we use the Q-learning [18] approach to compute the

optimal simplex weights and speed. The RL setup for our

problem is shown in Figure 4.

The RL-Actor involves different components of DeepN-

NCar which are responsible for the Q-learning process. Figure

4 shows the interactions between the RL-Agent, and the

Environment.

The Environment component within the RL-Actor tracks

and estimates the state (S) of the system based on an internal

estimate of the Markov Decision Process (MDP) and computes

a reward (r) for an action (a).

S represents the current state of the RL-Agent in the

environment. These states continuously change as the agent

interacts with the environment, and the state information is

used by the agent to continuously learn the optimal action.

The weights (WL, WS) and speed (V) are encoded as the

state information S(WL, WS , V). It is important to have

discretized states to build the MDP and perform the necessary

action. For each of the state variables WL,WS ∈ (0, 1) and

V ∈ (15.58, 15.62)(PWM), we define a set of equidistant

points of separation δWL, δWS = 0.05 and δV = 0.01 to get

a vector of ensemble weights containing 21 elements and a

vector of V containing 41 elements.

Reward: The environment also computes a reward for

the previous action performed by the agent. The reward in

Equation 4 is formulated to account for V and M̂ :

r(st, at) = Vt − Vt · t̂ (4)

111

action space ↑ V by 0.01 ↓ V by 0.01 NOP
↑ WL by 0.05 (0.55,0.45,15.86) (0.55,0.45,15.84) (0.55,0.45,15.85)
↓ WL by 0.05 (0.45,0.55,15.86) (0.45,0.55,15.84) (0.45,0.55,15.85)

NOP (0.50,0.50,15.86) (0.50,0.50,15.84) (0.50,0.50,15.85)

TABLE II: Action space for a given state (WL = 0.5, WS = 0.5, V =
15.85). Similar action combinations are generated for other states. NOP:means
no operation

where Vt is the speed of the car in the current state, and

t̂ is a scalar quantity computed based on the deviation of the

car from the center of the track. The measure t̂ is decided

by the LD algorithm of the SS: if the algorithm detects both

lanes of the track in the captured image, then the car is at the

center of the track (t̂ = 0); if the algorithm detects only one

lane, then the car has deviated from the center (t̂ = 1/2); and

if it detects no lanes then the car is out of track (t̂ = 10). The

system may initially stray away from the center of the track

or choose to remain at low speeds; however as it learns to

optimize its speed while also trying to keep the center of the

track in an effort to receive the highest reward.

RL-Agent selects optimal actions for the state information

provided by the environment. For each state s ∈ S, the agent

performs an action a ∈ A, which results in a reward, r :
S × A → R, as the agent transitions to state s′ ∈ S. The

possible action space for a state with (WL = 0.5, WS =
0.5, V = 15.85) is shown in Table II, a similar action space

is created for all the different combinations of (WL,WS , V).

Thus, there are 9 possible actions that can be performed from

any state.

For each state-action pair (s, a), the agent learns the “qual-

ity” Q(s, a) of taking action a in state s. The Q value is

updated using the Bellman equation [18], which takes the

current state and action as inputs along with the parameters

learning rate α ∈ [0, 1], and discount factor γ ∈ [0, 1]. These

parameters control the amount of learning done by the RL-

Agent. For our experiments we used α = 0.1, and discount

factor γ = 0.4, and number of training steps = 1000 obtained

by tuning through various episodes.

During training (exploration), the computed Q values for

each state-action pair is stored in a lookup table called the Q-

Table. During testing, the RL-Agent uses the Q-Table to select

actions at each state.

IV. SYSTEM LEVEL CONFIDENCE ESTIMATION

For autonomous systems, it is necessary to develop a mecha-

nism that can monitor the system operation and provide a level

of confidence as to how safe the system will be in different

operating scenarios. This is difficult as it requires an effective

knowledge of the distribution of the environment in which

the system operates. In a limited setting where the systems

operation and the environment modes can be characterized,

we can use a Bayesian network to learn the probability

distribution. We then can use this distribution to estimate the

probability that the system will remain safe given a particular

control action. The evidence for the confidence increases over

time as we collect more data from safe operation trajectories.

In case of the DeepNNCar, we use a Bayesian Network

model (Figure 5) to estimate the probability that the car will

remain on track, given its current state and control actions.

Data collected during training and evaluation, is used to build

a model to estimate the current position of the car, using

the output of the opto-coupler and the steering commands

issued to the car. The data is also used to identify safe-

turn regions (in different segments of the track) and the

ranges for commands that keep the car within the track (at

different speeds of operation). The nodes current-position,
current-velocity and current-steering capture the current state

of the car. The node SafeTurnRegion captures the likelihood

of the car being in the safe-turn region when a control-cycle

update is triggered. SafeTurnRegion and the steering command

CmdSteeringOnTurn issued when the car is in the safe turn

region influence the likelihood of the car remaining InTrack.
The current-position node corresponds to the car distance

from the next safe turn region. The discrete states based on

the distance include On, Near and, Far. The discrete states

for current-velocity are Slow (less than 0.25 m/s), Medium
(between 0.25 and 0.6 m/s) and Fast (greater than 0.6 m/s).

The current-steering node corresponds to the current steering

angle of the car relative to its desired direction and includes

the states left (less than -10°), straight (between -10°and +10°)

and right (greater than 10°). The node CmdSteeringOnTurn
corresponds to the steering command issued when the car is

on the safe turn region and includes the states (Left, Right
and Straight) which are based on the range of the steering

command values. The node InTrack indicates if the car will

remain on track when the turn is executed. This node include

two states yes and no.
The priors and the conditional probability tables have been

filled based on our understanding of the system during ex-

perimentation. The bar graph in each of the root nodes in

Figure 5 shows the node probabilities based on logical infer-

ences using the priors and conditional probabilities. Tables III

and IV capture the conditional probability tables for the nodes

SafeTurnRegion and InTrack respectively.

The prior probabilities on the Current-Position node shows

that there is an equal chance of the car being in the three

position states. With regards to Current-Steering, the Left state

has a low probability due to the shape of the track and the

nature of the mission. The Left state is observed only when

there is an error or there is a course correction for an error.

The Current-Velocity has been observed to be in the medium

range most of the time giving the Medium state a higher

prior probability. The lower velocity states are observed in

the beginning, while the fast speeds are not common. Given

the shape of the track, the steering command during turns is

mostly right as seen in the priors for CmdSteeringOnTurn.
Based on the priors for the root (observation) nodes and

the likelihoods captured in the conditional probability tables

(Tables III, IV), the priors for the assurance nodes (SafeTurn-
Region and InTrack) can be inferred. The prior probability of

being on track (0.7) reflects our experimental evidence with

CSW-Simplex architecture. The Bayesian network model was

112

TABLE III: Conditional Probability Table for SafeTurnRegion node.

Current
Position

Near On Far

Current
Velocity

Slow Medium Fast Slow Medium Fast Slow Medium Fast

Current

Steering* S L R S L R S L R S L R S L R S L R S L R S L R S L R

SafeTurnRegion
=Yes

1 0.8 0.8 0.9 0.6 0.6 0.2 0.1 0.1 1 1 1 1 1 1 1 1 1 0.9 0.9 0.9 0.8 0.7 0.7 0.5 0.2 0.2

SafeTurnRegion
=No

0 0.2 0.2 0.1 0.4 0.4 0.8 0.9 0.9 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.2 0.3 0.3 0.5 0.8 0.8

* - Current Steering states : S=Straight, L=Left, R=Right.

TABLE IV: Conditional Probability Table for InTrack node

SafeTurnRegion Yes No
CmdSteering Left Straight Right Left Straight Right
Velocity Slow Med. Fast Slow Med. Fast Slow Med. Fast Slow Med. Fast Slow Med. Fast Slow Med. Fast
InTrack=Y 0.6 0.2 0 0.7 0.5 0 1 0.9 0 0.2 0.1 0 0.3 0.2 0 0.5 0.4 0
InTrack=N 0.4 0.8 1 0.3 0.5 1 0 0.1 1 0.8 0.9 1 0.7 0.8 1 0.5 0.6 1

Fig. 5: Bayesian Network model for Safety Assurance Fig. 6: Bayesian Inference when current-velocity is set to Slow

Fig. 7: Bayesian Inference when current-velocity is set to Fast Fig. 8: Bayesian Inference when current-velocity is set to Medium,
current-steering is set to Straight and current-position is set to Far

used to compute the confidence metric (the probability of car

being on the track and the probability of car being in the turn

region to execute control action) under different situations.

This was done by setting the evidence on the root (observation)

nodes and executing the Bayesian inference engine to compute

the posterior probabilities.

The model predicts that when the current-velocity is set to

Slow, there is a high probability of the car being in the safe

turn region and remaining on the track (Figure 6). Alternately,

figure 7, shows that when the speed is set to Fast, the chance

of being in the safe turn region to execute a control action

is greatly reduced and there is no chance of remaining on

the track. Figure 8 shows that when the current-velocity is

Medium, current-steering is Straight and the current-position
is Far from the safe turn region, there is a good chance of the

car executing a control action in the safe turn region (80%)

and remaining on track (77%). The results of the Bayesian

Network agrees with our experimental observations.

V. RESOURCE MANAGEMENT AND SYSTEM INTEGRATION

In this section, we discuss the integration of fog computing

for runtime task offloading. We also integrate different system

components and discuss their functioning for efficient opera-

tions.

A. Managing Resource Constraints

The complex computations of simplex strategies increase

the workload on the resource constrained RPi3. This workload

increases the power consumption, CPU utilization and the

temperature of RPi3 beyond 70°C (configured soft limit).

Beyond the soft limit, the clock speed and the operating

113

voltage of RPi3 are reduced [19]. To address the increasing

temperature and CPU utilization problem, we add multiple

computing devices on-board the DeepNNCar, and distribute

the tasks among them. However, this approach requires ad-

ditional external power sources, which increases development

cost of the platform. Alternatively, as the RPi3 supports WiFi

connectivity, we setup wireless communication with other fog

or edge nodes and offload some tasks. We use the second

approach to keep the development costs low, and utilize the

wireless communication capability that enables fog computing.

We offload only non-critical tasks (like RL-Actor, which only

has to access the Q-Table and select actions). No critical

components (Decision Manager) will be offloaded.

To manage the offload challenges, the middleware frame-

work has a Resource Manager (RM) that performs the fol-

lowing tasks: (1) continuous monitoring of resource state

(temperature and CPU Utilization), (2) selection of an optimal

fog node for task deployment, and (3) adjusting the vehicle

speed (V) according to variations in the inference pipeline

times. The RM continuously monitors the temperature and

CPU utilization of the on-board computer and may offload

one or more tasks to the other fog nodes if necessary.

In the background, the RM continuously performs a latency

test every 30 seconds using the iPerf [20] networking tool

to select a fog node with lowest latency (as it increases the

inference time TR). If the temperature exceeds 70°C, the RM

stops the tasks on RPi3 and seamlessly connects to identical

tasks running on the selected fog nodes using ZeroMQ (ZMQ)

[21]. Once the temperature has fallen below the threshold

(70°C), the RM reactivates the tasks on the RPi3.

Task offload will keep the increasing temperature in check;

however, the latency overhead of the wireless communication

increases the inference pipeline time TR (discussed in section

V-B) of the system. To compensate for the increased time, the

RM instructs the DM to saturate (limit) the top speed of the

car. The saturated maximum speed VMAX is calculated using

the safe distance (dS) which is the closest distance to the track

turns at which the car will have to take a decision to avoid

going off the track. The dS is a track specific quantity which

was found to be 0.09m for our track (see Figure 2). Therefore,

any decision taken before reaching this distance will give the

car a good turning radius. However, any decision taken after

this distance will leave the car with insufficient space to turn

which will result in a safety violation. VMAX is computed as:

VMAX = dS

TR
, where TR is the inference pipeline time. During

task offloads, the DMA has to wait longer for a reply from

the offloaded component due to the latency overhead, which

increases the TR.

B. System Integration

The components of DeepNNCar and the data flow among

them is shown in Figure 9. DeepNNCar uses ZMQ for

communication among its components. The camera provides

new images at 30 Hz and the IR opto-coupler speed sensor

continuously collects data to compute the speed of the car.

Physical
Camera

(§II)

Physical
Opto-Coupler

(§II)

Camera
Device Actor

(publish I) (§V-B)

Opto-Coupler
Device Actor

(publish V) (§V-B)

Message
Buffer
(Actor)
(§V-B)

LEC Actor
(modified-
DAVE-II)

(§II)

Safety-
Supervisor

Actor
(§II)

RL-Actor
(RL-Agent

+ Environment)
(§III)

Decision
Manager

Actor (§V-B)

GPIO
Device

Actor (§II)

Steering
Servos

§II

Titan
Motor

§II

Confidence Estimator (It receives all published messages on the car) (§IV)

Resource Monitor and Task Offloader
(Monitors the state of all hardware and the resource used on RPi3) (§V-A)

SL

SS , STOP

M̂

VSET , WSET

PWM

Sampling Tick

VMAX

Fig. 9: A block diagram of DeepNNCar along with components. There are
asynchronous interactions among various components and thus different mes-
saging patterns were used. The request-reply communications are shown with
dotted lines, the publish-subscribe communications are shown in solid lines,
and the red dotted lines indicate the hardware connections. The descriptions
for all the symbols can be found in Table I.

Then, the camera device actor3 and the opto-coupler device

actor periodically publish the images (I) and speed (V) to all

the subscriber components. However, the LEC actor, the SS

actor, and the RL-Actor are aperiodic consumers (see [23])

which do not consume the sensor values until prompted by the

DMA. The interactions between the periodic publishers and

aperiodic consumers are handled with the help of a Message

Buffer Actor (MBA), which has a one buffer queue to store

the published data (both I and V) along with a sequence

label. The data in the MBA gets updated according to the

sampling period of the sensors. However, this data cannot be

published until the MBA has received a sampling tick and a

request from the DMA to publish the data of a certain label.

Once the MBA receives this request, it publishes the I and V
messages to all subscribed components. Using this data, the

LEC actor predicts SL, the SS computes SS , track position

M̂ , and STOP (a command issued if the car goes out of the

track), and the RL-Actor computes WL, WS and VSET .

Decision Manager Actor: The DMA issues requests for

the sequence label and data SL, SS from the controllers,

and for WL, WS , and VSET from the RL-Actor. Once the

controller and the RL actor have finished computing, they

reply to the DMA their label and values. The DMA then

matches the labels and computes SR using Equation 1 before

feeding SR and VSET to the GPIO device actor, which controls

the two motors. After applying the controls to GPIO, the DMA

starts a new cycle. This cycle continuous indefinitely until it is

terminated by the STOP signal from the SS or manually by the

user. The tasks performed between two sampling ticks of the

DMA is one control cycle of the system and the time taken

to perform one control cycle is referred to as the inference

pipeline time TR. The TR varies for every control cycle, but

3A device actor converts hardware sensor information into topics that can
be published and subscribed to, see [22].

114

the average inference time for CSW-Simplex is experimentally

found to be 130ms (see Figure 10).

VI. EVALUATION

To evaluate the performance of the proposed weighted

simplex strategies, and the resource manager on DeepNNCar,

we built three different indoor tracks shown in Figure 2. These

tracks were build in our laboratory using 10’ x 12’ tarps, under

controlled lighting condition (higher lighting intensities creates

reflections on the tarp, resulting in the LD algorithm to fail),

and they had different geometric shapes and turns. The LEC

was trained on the images collected from Track1 and Track2,

and it was later tested on Track3 to ensure the trained CNN

had not overfit (generalized with the training data).

To evaluate the safety performance of the different con-

trollers (LEC, SS) and weighted simplex strategies, we de-

ployed them on DeepNNCar and performed varied trial runs.

Figure 3 shows the number of soft safety violations performed

by the different controllers and strategies at different speeds.

Keeping the speed constant (0.25 - 0.65) m/s we ran the car

with different controllers separately for 10 laps around Track1.

For the LEC and SS, the data for safety violations were

collected by maintaining a constant vehicle speed (ranging

from 0.25 to 0.65 m/s) set by a human supervisor, and

controlled using a PID controller. The SW-Simplex and CSW-

Simplex strategies do not maintain a constant speed. Therefore,

the safety violations for these strategies were segregated into

different speed groups after completing the experiments. The

CSW-Simplex was found to perform most reliably with the

lowest number of violations.

As discussed earlier, the primary goal of the weighted

simplex strategy is to find the optimal controller weights; we

performed experiments to find how the weights of the different

simplex strategies varied according to the track segments. For

this we clustered the Track1 into three segments: Straight,

Near Curved Segment and In Curved Segment, and recorded

the weights data. From Table V we see the classical-Simplex

uses a binary weights to compute the systems output. In the

SW-Simplex strategy the weights remain fixed for different

track segments, and in the CSW-Simplex strategy the weights

changes dynamically for different track segments. In CSW-

Simplex, the weights are same as shown in Table V for most

of the trial runs; however, depending on the car’s deviation

from the center of the track, the weights may vary sightly by

(δWL, δWS = 0.05)

The second design goal of the weighted simplex strategy

is to optimize the speed performance of the system. Figure

11 shows the speed performance of the different controllers,

which was plotted using data collected by running the car with

different controllers and strategies on Track1 for 10 laps. As

seen the SS and LEC have a similar speed pattern due to the

PID controller they use. However, for SW-Simplex and CSW-

Simplex the speeds are continuously updated depending on the

mode of the track. It can be seen that CSW-Simplex optimizes

the speed of the car better compared to the other strategies.

Simplex Strategy Straight
Segment

Near
Curved
Segment

In Curved
Segment

Classical-Simplex (WL, WS) (1, 0) (1, 0) (0, 1)
SW-Simplex (WL, WS) (0.8, 0.2) (0.8, 0.2) (0.8, 0.2)
CSW-Simplex (WL, WS) (0.95, 0.5) (0.85, 0.15) (0.8, 0.2)

TABLE V: Comparing the ensemble weights of different simplex strategies.
For Classical-Simplex, the weights show that the LEC was chosen in the
straight segments, and SS in the curved segments. For the SW-Simplex
we have a fixed weight for all the track segments, these weights were
manually tuned by a human supervisor. For the CSW-Simplex the weights
were dynamically updated by the Q-learning algorithm.

0 50 100 150 200

(a)

(b)

(c)

(d)

Inference Times in Milliseconds

Fig. 10: Inference times in milliseconds of (a) SS: driving only with the
safety supervisor, (b) LEC: driving only with the modified Dave-II model, (c)
SW-Simplex, and (d) CSW-Simplex.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a)

(b)

(c)

(d)

Speeds across different strategies in meter per second

Fig. 11: Speeds in meter per second of (a) SS: driving only with the safety
supervisor, (b) LEC: driving only with the modified Dave-II model, (c) SW-
Simplex, and (d) CSW-Simplex.

The safety and speed results of weighted simplex strategies

indicate an improvement over the LEC and SS controllers,

however the increased computations of the weighted simplex

strategies increases the inference pipeline times. Figure 10

illustrates the inference times of the different controllers and

strategies. We observe that the LEC and SS have lower

pipeline times (80 ms) while the SW-Simplex and CSW-

Simplex controllers have a higher pipeline time (130 ms).

As discussed in Section V, to compensate for the compu-

tations of the controllers and weighted simplex strategies, we

setup a testbed for performing the task offloading experiments.

We had a wireless reply-request communication between the

onboard RPi3, a laptop (with an Intel 4-core processor)

and a desktop (with 32 AMD Ryzen Threadripper 16-core

processor). These experimental results were collected in real-

time when the car was running on Track1.

To evaluate the performance of the task offloader, we

performed task offload to one of the above mentioned fog

nodes, and evaluated the temperature variations of the RPi3.

The Figure 12 shows the temperature of the RPi3 to drop

below the threshold (70°C) when the tasks are offloaded to

the fog device. It also shows that the tasks were got back to

115

1,400 1,450 1,500 1,550 1,600 1,650 1,700

66

68

70

72

74

1,400 1,450 1,500 1,550 1,600 1,650 1,700

(off)

(on)

Fig. 12: The effect of offloading the tasks in response to high temperature
per iteration of the inference pipeline. The trigger to offload the task is 70°C.
The blue line shows the temperature in Celsius. The red line shows when the
tasks were offloaded to the fog (on=on fog, off=off fog). The graph shows a
subset of iterations (total 10000 iterations).

50 100 150 200 250

(a)

(b)

Fig. 13: Inference times in milliseconds (a) CSW-Simplex with all tasks
executed onboard (b) CSW-Simplex with RL-Actor offloaded (Q-table was
offloaded to the fog node, and RL-Actor had to fetch actions from the
offloaded Q-table).

0.2 0.3 0.4 0.5 0.6

(a)

(b)

Fig. 14: Speed readjustment during offload (m/s) (a) CSW-Simplex with all
tasks executed onboard (b) CSW-Simplex with RL-Actor offloaded (Q-table
was offloaded to the fog node, and RL-Actor had to fetch actions from the
offloaded Q-table).

RPi3 once the temperature dropped below the threshold.

Results in Figure 12 shows that task offload keeps the RPi3’s

temperature in check; however it increases the inference

pipeline time due to added latency overhead. The pipeline

time comparison of the car when tasks get offloaded vs. not-

offloaded is shown in Figure 13. From the figure it can be seen

that CSW-Simplex with all tasks performed onboard RPi3 to

have lower inference time TR compared to the CSW-Simplex

with RL-Actor offloaded (Q-table was offloaded, so RL-Actor

had to fetch the actions from the offloaded Q-table).

In Section V we discussed the importance of saturating the

top speed of the car in order to compensate for the latency

overhead. Figure 14 shows that the DeepNNCar with offloaded

RL-Actor runs at lower (safe) speeds in order to compensate

for the increased inference time TR.

VII. RELATED WORK

Our work encompasses several topics including Au-

tonomous system testbeds and Simplex Architectures. These

topics are briefly discussed below.

Autonomous testbeds: There have been several ongoing

projects related to physical testbeds for autonomous systems.

F1/10 [24] is an autonomous racing competition with cars

built on Traxxas 1/10 scale RC car (like DeepNNCar) with

an expensive NVIDIA’s Jetson TX1 onboard computing unit.

These autonomous builds use cameras, IMUs, and expen-

sive LIDAR ($1,775) systems for performing simultaneous

localization and mapping (SLAM). An F1/10 car is far more

expensive compared to the cost of DeepNNCar (approx. $3000

vs. $418). DeepPicar [25] is another platform which is built

using a smaller 1/24 scale RC chassis. This platform also

uses an RPi3 as the computing unit and performs autonomous

driving using NVIDIA’s DAVE-II CNN. This build is relatively

inexpensive ($70), but has a considerably smaller chassis

and uses discrete steering actuation unlike DeepNNCar which

performs continuous steering.

Simplex architectures and arbitration logic: Simplex

Architectures [10] have been extensively used in CPS to

provide safety guarantees to control systems. They have been

used in online control systems [26], real time embedded

systems [27], and unmanned aerial vehicles (UAV) [11]. These

implementations use arbitration logic to switch between the

controllers. The two well known switching criteria are linear

matrix inequality [26] and hybrid system reachability [28].

Simplex Architectures always choose the output of one con-

troller, depending on the safety criteria, whereas the weighted

simplex strategy computes a weighted sum of the different

controller’s output. Also, with Simplex Architectures it is

not possible to combine two unverified controllers; however,

weighted simplex strategies allow their combination. In addi-

tion, the switching criteria based on reachability analysis could

be slow if the sate space is large. However, with the use of RL

in CSW-Simplex finding the optimal weights during testing is

about 20 milliseconds.

Safety via contracts: Andalam, Sidharta, et al. [29] have

discussed CLAIR, a contract-based framework for developing

resilient CPS architectures. This work is predominantly a

contract-based framework for components in different levels

of abstraction. Formal contracts are used to capture the as-

sumptions about the environment and guarantees provided by

the systems components. It also employs resilience managers

at the component and system levels to monitor the safety

contracts. If the A-G contract fails then the component/system

violates the safety. In our work, we use the weighted simplex

strategy, and we show that context-sensitive weighted simplex

strategies can improve the safety of the robotic system.

Phan, Dung et al. [12] have integrated Simplex Architecture

with A-G contracts (to determine the switching logic), and

have named it as Component Based Simplex Architecture

(CBSA). In addition to the switching logic, A-G contracts

are also used to provide a run-time assurance for the systems

safety using the components assured contracts. While CBSA

uses A-G contracts for the arbitration logic and run-time

assurances, the CSW-Simplex uses RL for finding the optimal

weights to compute the systems (safe) output.

116

VIII. CONCLUSION AND FUTURE WORK

In this work, we have discussed the problems associated

with the LECs and have further implemented it on our physical

testbed, DeepNNCar. To improve the safety guarantees of the

LEC driven robot, we introduced a framework that allows

for the integration of safety supervisors and weighted simplex

strategies. We described two weighted simplex strategies (SW-

Simplex, CSW-Simplex), and evaluated their effects on speed,

steering, and safety of DeepNNCar. Our analysis showed

that the CSW-Simplex outperformed other implementations

with the fewest safety violations and maximal safe operating

speed of the car. Furthermore, we developed a system monitor

which estimates a probability of the system staying in the

safe working region. In addition, we described a mechanism

to compensate for the computation overhead of the simplex

strategies by offloading tasks to available fog nodes.

This framework can be integrated onto robots used in

factories, warehouse and research laboratories, where they are

required to perform safe navigation and coordinated tasks.

As future work, we plan to integrate fog-edge performance

monitoring benchmark tool like FECBench [30], and an online

confidence estimation scheme, which uses real time data to

predict the confidence metric. We also plan to extend the

existing framework to perform multi-agent experiments.

Acknowledgements: This work was supported by the

DARPA and Air Force Research Laboratory. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily

reflect the views of DARPA or AFRL.

REFERENCES

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[2] D. A. Pomerleau, “ALVINN: An autonomous land vehicle in a neural
network,” in Advances in neural information processing systems, 1989,
pp. 305–313.

[3] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[5] T. Glasmachers, “Limits of end-to-end learning,” arXiv preprint
arXiv:1704.08305, 2017.

[6] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering. ACM, 2018,
pp. 303–314.

[7] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, 2017, pp. 1–18.

[8] W. Xiang, H.-D. Tran, and T. T. Johnson, “Reachable set computation
and safety verification for neural networks with ReLU activations,” arXiv
preprint arXiv:1712.08163, 2017.

[9] C. Richter, W. Vega-Brown, and N. Roy, “Bayesian learning for safe
high-speed navigation in unknown environments,” in Robotics Research.
Springer, 2018, pp. 325–341.

[10] L. Sha, “Using simplicity to control complexity,” IEEE Software, no. 4,
pp. 20–28, 2001.

[11] P. Vivekanandan, G. Garcia, H. Yun, and S. Keshmiri, “A simplex
architecture for intelligent and safe unmanned aerial vehicles,” in 2016
IEEE 22nd International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA). IEEE, 2016, pp. 69–
75.

[12] D. Phan, J. Yang, M. Clark, R. Grosu, J. D. Schierman, S. A.
Smolka, and S. D. Stoller, “A component-based simplex architecture
for high-assurance cyber-physical systems,” in 17th International
Conference on Application of Concurrency to System Design, ACSD
2017, Zaragoza, Spain, June 25-30, 2017, 2017, pp. 49–58. [Online].
Available: https://doi.org/10.1109/ACSD.2017.23

[13] G. Biswas, H. Khorasgani, G. Stanje, A. Dubey, S. Deb, and S. Ghoshal,
“An approach to mode and anomaly detection with spacecraft telemetry
data,” International Journal of Prognostics and Health Management,
2016.

[14] D. Jiménez, “Dynamically weighted ensemble neural networks for
classification,” in 1998 IEEE International Joint Conference on Neural
Networks Proceedings. IEEE World Congress on Computational
Intelligence (Cat. No. 98CH36227), vol. 1. IEEE, 1998, pp. 753–756.

[15] M. Davis, M. Smith, J. Canny, N. Good, S. King, and R. Janakiraman,
“Towards context-aware face recognition,” in Proceedings of the 13th
annual ACM international conference on Multimedia. ACM, 2005, pp.
483–486.

[16] H. Cao, D. H. Hu, D. Shen, D. Jiang, J.-T. Sun, E. Chen, and Q. Yang,
“Context-aware query classification,” in Proceedings of the 32nd
international ACM SIGIR conference on Research and development in
information retrieval. ACM, 2009, pp. 3–10.

[17] L. Fridman, B. Jenik, and B. Reimer, “Arguing machines: Percep-
tioncontrol system redundancy and edge case discovery in real-world
autonomous driving,” arXiv preprint arXiv:1710.04459, 2017.

[18] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[19] “Raspberry Pi frequency management.” [Online]. Avail-
able: https://www.raspberrypi.org/documentation/hardware/raspberrypi/
frequency-management.md

[20] “iPerf: A tool for measuring network performance.” [Online]. Available:
https://iperf.fr/

[21] P. Hintjens, ZeroMQ: messaging for many applications. ” O’Reilly
Media, Inc.”, 2013.

[22] A. Dubey, G. Karsai, P. Volgyesi, M. Metelko, I. Madari, H. Tu, Y. Du,
and S. Lukic, “Device access abstractions for resilient information
architecture platform for smart grid,” IEEE Embedded Systems Letters,
pp. 1–1, 2018.

[23] N. Mahadevan, A. Dubey, and G. Karsai, “Model-based software
health management for real-time systems,” in IEEE Aerospace
Conference(AERO), vol. 00, 03 2011, pp. 1–18. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/AERO.2011.5747559

[24] “F1Tenth autonomous racing competition.” [Online]. Available:
\url{http://f1tenth.org/}

[25] M. G. Bechtel, E. McEllhiney, and H. Yun, “DeepPicar: A low-
cost deep neural network-based autonomous car,” arXiv preprint
arXiv:1712.08644, 2017.

[26] D. Seto and L. Sha, “A case study on analytical analysis of the
inverted pendulum real-time control system,” CARNEGIE-MELLON
UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, Tech.
Rep., 1999.

[27] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and
L. Sha, “The system-level simplex architecture for improved real-time
embedded system safety,” in Real-Time and Embedded Technology and
Applications Symposium, 2009. RTAS 2009. 15th IEEE. IEEE, 2009,
pp. 99–107.

[28] S. Bak, K. Manamcheri, S. Mitra, and M. Caccamo, “Sandboxing con-
trollers for cyber-physical systems,” in Cyber-Physical Systems (ICCPS),
2011 IEEE/ACM International Conference on. IEEE, 2011, pp. 3–12.

[29] S. Andalam, D. J. X. Ng, A. Easwaran, and K. Thangamariappan, “Clair:
A contract-based framework for developing resilient cps architectures,”
in 2018 IEEE 21st International Symposium on Real-Time Distributed
Computing (ISORC). IEEE, 2018, pp. 33–41.

[30] Y. Barve, S. Shekhar, A. Chhokra, S. Khare, A. Bhattacharjee, and
A. Gokhale, “Fecbench: An extensible framework for pinpointing
sources of performance interference in the cloud-edge resource spec-
trum,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC).
IEEE, 2018, pp. 331–333.

117

