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Abstract—This demo showcases the features of an adaptive
middleware framework for resource constrained autonomous
robots like DeepNNCar (Figure 1). These robots use Learning
Enabled Components (LECs), trained with deep learning models
to perform control actions. However, these LECs do not provide
any safety guarantees and testing them is challenging. To over-
come these challenges, we have developed an adaptive middleware
framework that (1) augments the LEC with safety controllers
that can use different weighted simplex strategies to improve
the systems safety guarantees, and (2) includes a resource
manager to monitor the resource parameters (temperature, CPU
Utilization), and offload tasks at runtime. Using DeepNNCar we
will demonstrate the framework and its capability to adaptively
switch between the controllers and strategies based on its safety
and speed performance.

Index Terms—Autonomous Robots, LEC, Convolutional Neu-
ral Networks, Simplex Architecture, Reinforcement Learning.

I. INTRODUCTION

Autonomous robots are being ubiquitously used in dif-

ferent cyber physical system (CPS) applications including

self-driving cars [1], manufacturing (robotic arms, service

robots), agriculture, and search-and-rescue disaster manage-

ment (autonomous drones [2]). These systems use Learning

Enabled Components (LECs), which are trained with deep

learning models to perform precise control actions. However,

these training scenarios are often limited and lead to unsafe

operations in some corner cases. For example, consider trying

to operate a robot that was trained individually, to fly in

formation with other robots. Such a scenario will most likely

lead to collisions. Our solution framework presented in [3]

uses reinforcement learning for designing weighted simplex

strategies to augment the trained LECs to reduce the safety

violations.

The Simplex Architecture [4] has long been used in safety

critical CPS applications like aircraft (Boeing 777 [4]), un-

manned aerial vehicles (UAV) and mission critical ground

rovers to assure safety of the system. These architectures

augment unverified, high performance controllers with high

assurance safety supervisors and a decision manager (DM) to

perform arbitration between the controllers. However, some-

times it is not possible to get a high assurance safety supervisor

(SS in our example shown in Figure 3). In such scenarios,

using Simplex Architectures will not improve the systems

safety guarantees. However, performing an ensemble approach

to utilize the weighted sum of outputs [5] could improve

Fig. 1: DeepNNCar platform with different onboard components and sensors.
The car uses the front facing camera images and the IR opto-coupler speed
data to compute the continuous steering angle of the car.

the safe operations of the system. We call this approach

of computing the sum of weighted controller’s output as

“Weighted Simplex Strategy”.

Demonstration: The testbed for our demonstrations in-

cludes the DeepNNCar [3], a closed loop track, and Ultra-

Wideband sensors. Using the physical testbed we demonstrate

the performance of different weighted simplex strategies and

the ability of the framework to adaptively arbitrate between

the different controllers based on the safety and speed perfor-

mance.

II. OVERVIEW OF DEEPNNCAR

DeepNNCar1 is an autonomous testbed built on the chassis

of the Traxxas Slash 2WD 1/10 RC car. The Raspberry Pi

3 (RPi3) is the onboard computing unit which generates the

PWM signals to control the speed and steering motors. The

sensors on the car include a USB webcam that captures images

at 30 FPS with a resolution of 320x240x3 and a slot-type IR

opto-coupler attached near the rear wheel chassis to measure

the RPM and to compute the speed of the car.

1Build instructions, source code, datasets, and videos of bill of materials for
the DeepNNCar can be found at: https://github.com/scope-lab-vu/deep-nn-car
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Fig. 2: A block diagram of DeepNNCar along with the different components
which communicate using different messaging patterns. The request-reply
communications are shown with dotted lines, the publish-subscribe communi-
cations are shown in solid lines, and the red dotted lines indicate the hardware
connections.

DeepNNCar wirelessly communicates to a fog device, to

publish its run-time position, speed (m/s), steering angle,

CPU utilization, and temperature. This client-server setup of

DeepNNCar allows it to work in different modes including

data collection, livestream, and autonomous driving mode.

The car uses an end-to-end (e2e) learning [6] pipeline with

a modified NVIDIA’s DAVE-II Convolutional Neural Network

(CNN) model to infer a steering action based upon the camera

image and current speed. The CNN based controller (LEC) is

augmented with safety supervisor (SS) which uses a computer

vision based lane detection (LD) algorithm to determine a

discrete steering values for a given lane segment.

The framework integrates the LEC and SS to design dif-

ferent mode aware simplex strategies including SW-Simplex

(Simple Weighted Simplex) and CSW-Simplex (Context Sen-

sitive Weighted Simplex) for improving the systems safety

guarantees (see Figure 3). The DM (see Figure 2) allows for

adaptive switching between these strategies based on perfor-

mance. In addition, the framework has a resource manager

to monitor the computational resources and offload tasks at

runtime. Figure 2 shows the block diagram of DeepNNCar’s

different components and their interactions. A detailed func-

tioning of the block diagram along with the components is

provided in our full paper to be presented at ISORC 2019 [3].

III. DEMONSTRATION EXAMPLE

To showcase the system, we have designed a closed loop

track on which we run DeepNNCar using the different con-

trollers (LEC and SS), weighted simplex strategies (SW-

Simplex and CSW-Simplex) to monitor for its speed, steering

and safety performance. In this scenario, the car is tasked to

run around the track while optimizing its speed and reducing

the number of soft safety violations (car crossing the track

boundaries). Figure 3 shows the number of safety violations
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Fig. 3: Safety performance of different controllers deployed on DeepNNCar.
(a) SS: driving with OpenCV lane detection code, (b) LEC: driving with the
modified Dave-II CNN model, (c) SW-Simplex, and (d) CSW-Simplex. The
horizontal axis shows the different speeds of the car during an experiment.

performed by the different controller and weighted simplex

strategies while operating at various speeds.

The accurate real time position of the car on the track is

obtained using the Archimedes Ultra-Wideband System by

Ciholas (CUWB) [7]. Anchor sensors are positioned at the

boundaries of the track and a tag is positioned on the mobile

agent. The tags communicate with the anchors to provide the

real time position of the car. The 2d position, runtime speed,

steering and the safety performance of the car is displayed

on a dashboard of wirelessly connected fog device. Using

this setup we will demonstrate performance based arbitration

between different weighted simplex controllers. We will run

DeepNNCar around the track multiple times to illustrate the

DM’s (see Figure 2) capability to adaptively switch between

the controllers and strategies based on the current speed

and safety performance. This adaptability of the framework

allows the car to work with different controllers in changing

environments (different tracks, varying lighting conditions).
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