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ABSTRACT

Machine learning components such as deep neural net-
works are used extensively in Cyber-Physical Systems
(CPS). However, they may introduce new types of haz-
ards that can have disastrous consequences and need to
be addressed for engineering trustworthy systems. Al-
though deep neural networks offer advanced capabili-
ties, they must be complemented by engineering meth-
ods and practices that allow effective integration in CPS.
In this paper, we investigate how to use the conformal
prediction framework for assurance monitoring of CPS
with machine learning components. In order to handle
high-dimensional inputs in real-time, we compute non-
conformity scores using embedding representations of
the learned models. By leveraging conformal predic-
tion, the approach provides well-calibrated confidence
and can allow monitoring that ensures a bounded small
error rate while limiting the number of inputs for which
an accurate prediction cannot be made. Empirical eval-
uation results using theGerman Traffic Sign Recognition
Benchmark and a robot navigation dataset demonstrate
that the error rates are well-calibrated while the num-
ber of alarms is small. The method is computationally
efficient, and therefore, the approach is promising for
assurance monitoring of CPS.
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1. INTRODUCTION

Cyber-Physical systems (CPS) can benefit by incorpo-
rating machine learning components that can handle the
uncertainty and variability of the real-world. Typical
components such as deep neural networks (DNNs) can
be used for performing various tasks such as perception
of the environment. In autonomous vehicles, for ex-
ample, perception problems deal with making sense of
the surroundings like recognizing correctly traffic signs.
However, such DNNs introduce new types of hazards
that can have disastrous consequences and need to be ad-
dressed for engineering trustworthy systems. Although
DNNs offer advanced capabilities, they must be comple-
mented by engineering methods and practices that allow
effective integration in CPS.
A DNN is designed using learning techniques that re-

quire specification of the task, performance measure for
evaluating how well the task is performed, and experi-
ence which typically includes training and testing data.
Using the DNN during system operation presents chal-
lenges that must be addressed using innovative engineer-
ing methods. Perception of the environment is a func-
tionality that is difficult to specify, and typically, spec-
ifications are based on examples. DNNs exhibit some
nonzero error rate and the true error rate is unknown and
only an estimate from a design-time statistical process
is known. Further, DNNs encode information in a com-
plex manner and it is hard to reason about the encoding.
Non-transparency is an obstacle to monitoring because
it is more difficult to have confidence that the model is
operating as intended.
The objective is to complement the prediction of
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DNNs with a computation of confidence. We consider
DNNs used for classification in CPS. In addition to the
class prediction, we compute set and confidence predic-
tors using the conformal prediction framework [1]. We
focus on computationally efficient algorithms that can
be used for real-time monitoring. An efficient and ro-
bust approach must ensure a small and well-calibrated
error rate while limiting the number of alarms. This en-
ables the design of monitors which can ensure a bounded
small error rate while limiting the number of inputs for
which an accurate prediction cannot be made.

The proposed approach is based on conformal predic-
tion (CP) [22, 1]. CP aims at associating reliable mea-
sures of confidencewith set predictions for problems that
include classification and regression. An important fea-
ture of the CP framework is the calibration of the ob-
tained confidence values in an online setting which is
very promising for real-time monitoring in CPS applica-
tions. These methods can be applied for a variety of ma-
chine learning algorithms that include DNNs. The main
idea is to test if a new input example conforms to the
training data set by utilizing a nonconformity measure
which assigns a numerical score indicating how differ-
ent the input example is from the training data set. The
next step is to define a p-value as the fraction of ob-
servations that have nonconformity scores greater than
or equal to the nonconformity scores of the training ex-
amples which is then used for estimating the confidence
of the prediction for the test input. In order to use the
approach online, inductive conformal prediction (ICP)
has been developed for computational efficiency [1]. In
ICP, the training dataset is split into the proper training
dataset that is used for learning and a calibration dataset
that is used to compute the predictions for given confi-
dence levels. Existing methods rely on nonconformity
measures computed using techniques such as k-Nearest
Neighbors and Kernel Density Estimation and do not
scale for high-dimensional inputs in CPS.

In this paper, we investigate the ICP framework for as-
surance monitoring of CPS with machine learning com-
ponents. The approach leverages ICP for providing pre-
dictions with well-calibrated confidence. The main con-
tribution is that in order to handle high-dimensional in-
puts in real-time, we compute the nonconformity scores
using the embedding representations of the learned DNN
models. We combine the confidence predictions with a
monitor which ensures a bounded small error rate while
limiting the number of inputs for which an accurate pre-
diction cannot be made.

A second contribution of the paper is that it presents an
empirical evaluation of the approach using two datasets
for classification problems in CPS. The first dataset is the
German Traffic Sign Recognition Benchmark (GTSRB)
dataset [20]. For this dataset, we useMobileNet which is
a popular network architecture that provides low-latency
and low-power models to meet the resource constraints
of a variety of use cases [9]. The second dataset is the
Scitos-G5 robot navigation dataset [5] for which we used
a fully connected feedforward network architecture. We
implement various nonconformity functions and we in-
vestigate if they can be computed efficiently in real-
time. The significance level threshold is selected either
to a very small value driven by the CPS requirements
or is computed to minimize the number of predictions
with multiple classes. The empirical results demonstrate
that the error rates are well-calibrated and the number of
alarms is small. Hence, we can design real-time moni-
tors which can ensure a bounded small error rate while
limiting the number of inputs for which an accurate pre-
diction cannot be made.
Related work on confidence estimation for different

kind of machine learning models follows in Section 2.
In Section 3 we formally define the problem we worked
on. In Section 4 there is background on ICP that is used
by our approach described in Section 5. Finally, we eval-
uate the performance of our suggested approach on two
different applications in Section 6.

2. RELATED WORK

Confidence and uncertainty estimation in neural net-
works has received considerable attention especially in
the context of classification tasks in computer vision [8].
Neural networks for classification typically use a soft-
max layer. Correctly classified examples tend to have
greatermaximum softmax probabilities and several tech-
niques have been proposed for estimating the error rate.
However, the softmax probabilities may be overconfi-
dent even for incorrect classes [8]. This is the case be-
cause the softmax probabilities do not represent the ac-
tual probability distribution of the prediction.
In CPS with machine learning components, comput-

ing well-calibrated confidence measures for the predic-
tions is essential for providing system assurance but also
making the behavior interpretable by humans. Modern
DNNs keep increasing in size and are able to learn com-
plicated training sets. Several methods have been pro-
posed to calibrate the output probabilities of the predic-
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tor. A promising and very efficient method is tempera-
ture scaling [8]. The softmax activation function is used
after temperature scaling to compute calibrated probabil-
ity values. Although the method is very effective for cal-
ibration, it cannot be used for real-time monitoring in a
straightforward manner. Applying the approach for real-
time assurance monitoring requires choosing an appro-
priate threshold which ensures a small error rate while
limiting the number of input examples for which a con-
fident prediction cannot be made. Other methods for cal-
ibration include Platt scaling [18] and isotonic regression
[23]. A machine learning model is expected to perform
better in tasks that it has been trained on. Based on this
assumption, the approach presented in [7] analyzes the
training space and tries to find areas where more train-
ing data are required. A decision tree algorithm is used
to split the training space to areas based on their data
density and a prediction probability measure is assigned
to each region depending on the computed density.

Another framework developed to produce well-
calibrated confidence values is Conformal Prediction
(CP) [22, 19, 1]. The conformal prediction framework
can be applied to produce calibrated confidence values
with a variety of machine learning algorithms with slight
modifications. Using CP together with methods that re-
quire long running times, such as DNNs, is computa-
tionally inefficient. In [15] the authors suggest a mod-
ified version of the CP framework, they call Inductive
Conformal Prediction (ICP), that has less computatonal
overhead and they evaluate the results using DNNs as
undelying model. Deep k-Nearest Neighbors (DkNN)
is an approach based on ICP for classification problems
that uses the activations from all the hidden layers of a
neural network as features to the ICP [17]. This is based
on the assumption that when a DNN make a wrong pre-
diction there is a specific hidden layer that generated in-
termediate results that lead to the wrong prediction. So
taking into account all the hidden layers, we have better
interpretability of the predictions in each step. Another
popular machine learning model is the Desicion Trees.
In [10], the authors present an empirical investigation of
decision trees as conformal predictor and analyzed the
algorithm’s split criterion effect on ICP. Similarly, there
are evaluations using ICP together with random forests
[3], [4] as well as SVMs [13]. In all the above imple-
mentations of ICP the probability estimation of the pre-
diction or credibility is used to produce a different pre-
diction than the underlying algorithm.

Confidence bounds can also be generated for regres-

sion problems. In this case instead of sets of multi-
ple candidate labels we have intervals around a point
prediction that include the correct prediction with a de-
sired confidence. There are ICP implementations that
work on regression problems with different underlying
machine learning algorithms. In [16], the authors use
the k-Nearest Neighbours Regression (k-NNR) as a pre-
dictor and evaluate the effects of different nonconfor-
mity functions. Random forests can also be used in re-
gression problems. In [11], there is comparison on the
generated confidence bounds using k-NNR and DNNs
[14]. An alternative framework used to compute con-
fidence bounds on regression problems is the Simulta-
neous Confidence Bands. In [21] they generate linear
confidence bounds centered around the point prediction
of a regression model. In this approach the model used
for predictions has to be estimated by a sum of linear
models. Models that satisfy this condition are the least
squares polynomialmodels, kernel methods and smooth-
ing splines. Functional Principal Components (FPC)
analysis can be used for the decomposition of an arbi-
trary regression model to a combination of linear models
[6].

3. PROBLEM FORMULATION

A perception component in a CPS aims to observe and
interpret the environment, in order to provide informa-
tion for decision making. For example, a DNN can be
used for classifying traffic signs in autonomous vehi-
cles. The problem is to complement the prediction of
the DNN with a computation of the confidence. An effi-
cient and robust approach must ensure a small and well-
calibrated error rate while limiting the number of alarms
to enable real-time monitoring. The approach must en-
sure a bounded small error rate while limiting the num-
ber of inputs for which an accurate prediction cannot be
made.
During the system operation, the inputs arrive one by

one. After receiving each input, the objective is to com-
pute a valid measure of the confidence of the predic-
tion. The objective is twofold: (1) provide guarantees
for the error rate of the prediction and (2) design a moni-
tor which limits the number of input examples for which
a confident prediction cannot be made. Such a monitor
can be used for decision making, for example, by gener-
ating warnings and requiring human intervention.
The conformal prediction framework allows comput-

ing set and confidence predictors with well-calibrated
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confidence values [1]. The confidence is generated by
comparing how similar a test is to the training data
though different nonconformity functions. Our approach
uses DNNs to generate a lower-dimensional embedding
for each data point and estimates the similarity between
different data points in the embedding space depending
on the chosen nonconformity function. Depending on
the chosen confidence bound the conformal prediction
framework generates a set of possible predictions. If the
computed set contains a single prediction, the confidence
is a well-calibrated and valid indication of the expected
error. If the computed set contains multiple predictions
or no predictions, an alarm can be raised to indicate the
need for additional information. In CPS, it is desirable
to minimize the number of alarms while performing the
required computations in real-time. Evaluation of the
method must be based on metrics that quantify the error
rate, the number of alarms, and the computational effi-
ciency. For real-time operation, the time and memory
requirements of the monitoring approach must be sim-
ilar to the requirements of the DNNs used in the CPS
architecture.

4. BACKGROUND

In this section, we give a brief overview of Inductive
Conformal Prediction (ICP) [1] focusing on the defini-
tions and notation necessary for presenting the monitor-
ing algorithm. Consider a training set {z1, . . . , zl} of ex-
amples, where each zi ∈ Z is a pair (xi, yi) with xi the
feature vector and yi the label of that example. Given an
unlabeled input xl+1, the task is to estimate a measure
of confidence for different values ỹ for the label yl+1 of
this example. The underlying assumption for computing
such measure of confidence is that all examples (xi, yi),
i = 1, 2, . . . are independent and identically distributed
(IID) generated from the same but typically unknown
probability distribution.
Essential in the application of the ICP is the definition

of a nonconformity measure which shows how different
a labeled input is from the training examples. A non-
conformity function assigns a numerical score to each
example zi indicating how different the example zi is
from the examples in {z1, . . . , zi−1, zi+1, . . . , zn}. The
computation of the nonconformity is associated with an
underlying algorithm which maps an unlabeled exam-
ple x to the predicted label ŷ. There are many possible
functions that can be used [1]. A simple example is to
count the number of the k-nearest neighbors to zl+1 in Z

with label different than the candidate label ỹ (k-nearest
neighbors nonconformity measure).
Although lower nonconformity scores seem to corre-

spond to higher confidence in the prediction, it is not
possible to quantify the confidence based on absolute
nonconformity scores. In order to compute a confidence
measure, ICP uses a calibration dataset (Xc, Y c). Using
a nonconformity function, we can compute the noncon-
formity scores for all examples in the calibration data set

A = {α(x, y) : (x, y) ∈ (Xc, Y c)}. (1)

For a test example with feature vector x and a candidate
prediction j, the nonconformity can be computed sim-
ilarly to the calibration examples. In order to compute
useful predictions for test examples, ICP computes the
fraction of nonconformity scores for the calibration data
that are equal or larger than the nonconformity score of
a test input. These are the empirical p-values for the test
example defined as

pj(x) =
|{α ∈ A : α ≥ α(x, j)}|

|A|
. (2)

Then, a set prediction Γϵ for the input x can be computed
as the set of all labels j such that pj(x) > ϵ.
It is shown in [1] that predictors computed by ICP are

valid, that is the probability of error will not exceed ϵ
for any ϵ ∈ (0, 1) for any choice of the nonconformity
function. The problem is to compute efficient predictors
that output small prediction sets. In the case of real-time
monitoring of CPS, computational efficiency is an addi-
tional requirement.

5. ASSURANCE MONITORING

5.1. Monitoring Algorithm
In CPS, we would like to design a monitoring algorithm
which after receiving each input computes a valid pre-
diction that ensures a predefined error rate and limits the
number of input examples for which a confident predic-
tion cannot be made. Figure 1 illustrates the approach.
After receiving an input x, the DNN is used not only to
output a point prediction but also to provide representa-
tions for efficiently computing the nonconformity scores
for all possible labels, which in turn, are used to compute
a set prediction Γϵ at a given significance level ϵ. The
output of the monitor is defined as

out =


0, if |Γϵ| = 0

1, if |Γϵ| = 1

reject, if |Γϵ| > 1
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If the predicted set contains a single prediction, the mon-
itor outputs out = 1 to indicate a confident prediction
with well-calibrated error rate ϵ. If the predicted set con-
tains multiple possible predictions, the monitor rejects
the prediction and raises an alarm. Finally, If the pre-
dicted set is empty the monitor outputs out = 0 to in-
dicate that no label is probable. We distinguish between
multiple and no predictions, because they may lead to
different action in the system. For example, no predic-
tion may be the result of out-of-distribution inputs. The
algorithm is shown in Algorithm 1.

DNN

ICP

Assurance Monitor

ŷ

out

x

Γϵ

Figure 1: System Architecture

5.2. Low-dimensional Learned Represen-
tations

Typical nonconformity measures, such as the k-nearest
neighbor (k-NN) nonconformity measure, are computed
by considering the input space of the underlying al-
gorithm. Perception components for CPS use high-
dimensional inputs such as images or LiDAR point
clouds. For such cases, we investigate if we can use
nonconformity functions that are computed using low-
dimensional representations learned by the DNN. In par-
ticular, we use the activations of a fully connected penul-
timate layer to extract feature representations from the
inputs (Fig. 2).
The embedding of inputs such as images reduces the

dimensionality of the input data and allows the efficient
computation of the nonconformity measure. In addition,
we can use Euclidean distance in the corresponding vec-
tor space to compute informative nonconformity mea-
sures that lead to efficient predictions. Ideally, the rep-

Algorithm 1 – Monitoring Algorithm.
Input: training data (X,Y ), calibration data (Xc, Y c)
Input: trained neural network f with l layers
Input: Nonconformity function α
Input: test input z
Input: significance level threshold ϵ
1: // Compute the nonconformity scores for the calibra-

tion data offline
2: A = {α(x, y) : (x, y) ∈ (Xc, Y c)} ▷ Calibration
3: // Generate prediction sets for each test data online
4: for each label j ∈ 1..n do
5: Compute the nonconformity score α(z, j)
6: pj(z) =

|{α∈A:α≥α(z,j)}|
|A| ▷ empirical p-value

7: if pj(z) ≥ ϵ then
8: Add j to the prediction set Γϵ

9: end if
10: end for
11: if |Γϵ| = 0 then
12: return 0
13: else if |Γϵ| = 1 then
14: return 1
15: else
16: return Reject
17: end if

resentation of a test input will be closer to representa-
tions of the same class and far from representations of
different classes. We experiment with different number
of neurons for the penultimate layer and we evaluate the
effect on the performance and computational efficiency
of the approach. A promising research direction for fu-
ture work is to learn representations that lead to better
set and confidence predictors.

5.3. Nonconformity Measure
There are different nonconformity functions that can be
used to evaluate how unusual a specific input is relative
to the training set. We organize the nonconformity func-
tions based on the features of the underlying model they
use.

5.3.1. Penultimate Layer
A natural choice of the nonconformity function is how
much the prediction of the underlying algorithm differs
from the labels of the closest neighbors. We compute the
k-Nearest Neighbors (k-NN) nonconformity function in
the space defined by the lower-dimensional penultimate
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Figure 2: DNN architecture

layer which can reduce the required memory for the stor-
age of the training data as well as the execution time. Let
us denote by f : X → V the mapping from the input
space X to the space V defined the penultimate layer
enconding. After training is complete, we compute and
store the encodings vi = f(xi) for the training data xi.
Given a test example x with encoding v = f(x), we
compute the k-nearest neighbors in V and form a multi-
set Ω with their labels. The k-NN nonconformity of the
test example x with the candidate label y is defined as:

α(x, y) = |i ∈ Ω : i ̸= y|.

Another nonconformity function is the one nearest
neighbor (1-NN) function which evaluates how far the
closest training example of the same class is compared
to the closest training example in any other class [22] and
can be defined as

α(x, y) =
mini=1,...,n:yi=y d(v, vi)

mini=1,...,n:yi ̸=y d(v, vi)

where v = f(x), vi = f(xi), and d is a distance metric
in the V space.
These nonconformity functions require storing the

training data set. Since we expect similar inputs of the
same class to be close together and farther from inputs of
other classes, we can also use the nearest centroid non-
conformity function [1]. For each class yi we compute its
centroid µyi =

∑ni
j=1 v

i
j

ni
, where vij is the representation of

the jth training example from class yi and ni is the num-
ber of training examples in class yi. The nonconformity
function is defined as:

α(x, y) =
d(µy, v)

mini=1,...,n:yi ̸=y d(µyi , v)

where v = f(x) and we need to store only the centroid
for each class.

5.3.2. Softmax Layer
A class of nonconformity functions can be computed us-
ing only the activations of the softmax layer [12]. This
class does not require storing information related to the
training data, and thus, can be used for real-time mon-
itoring. The softmax activation function σSM normal-
izes the outputs of the last layer to empirical probabilities
p̂i = P̂ (yi|x) that sum to 1 [8].
Three nonconformity functions, hinge, margin and

brier score, are suggested in [12]. Using the hinge func-
tion, the nonconformity is computed using the probabil-
ity estimate of the candidate class label, y

α(x, y) = 1− P̂ (y|x).

TheMargin function considers two class labels, the can-
didate class label y and the most likely incorrect class
label yi

α(x, y) = max
yi ̸=y

P̂ (yi|x)− P̂ (y|x)

The Brier score nonconformity function considers all
the computed softmax probabilities p̂i of a test input
and it computes the nonconformity scores by compar-
ing p̂i with P (yi|x) assuming that for the candidate label
P (y|x) = 1 and for all the other labels P (yi|x) = 0

α(x, y) =
1

|Y |

|Y |∑
i=1

(P [yi|x]− P̂ [yi|x])2

where Y is the set of all classes.
The nonconformity scores for the calibration data are

computed using the ground truth labels. For test exam-
ples, the nonconformity scores are computed for every
candidate class. A candidate class is included in the set
prediction Γϵ if the corresponding p-value is greater than
the significance level ϵ.
The empirical probabibilities computed using the soft-

max layer may not be well-calibrated. Temperature scal-
ing is a simple method to calibrate neural networks [8].
The probabilities can be computed as q̂i = Q̂(yi|x) =
σSM (zi/T ), where z is the logits vector and T is a vari-
able called temperature. T is computed by optimizing
the negative log loss (NLL) on a validation set. The
hinge, margin, and Brier score nonconformity functions
can be combined with temperature scaling to compute
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the temparature scaled (TS) hinge, margin, and Brier
score nonconformity functions respectively as

α(x, y) = 1− Q̂(y|x),

α(x, y) = max
yi ̸=y

Q̂(yi|x)− Q̂(y|x),

and

α(x, y) =
1

|Y |

|Y |∑
i=1

(Q[yi|x]− Q̂[yi|x])2.

5.4. Significance Level Threshold
In CPS, it is not only essential to have a well-calibrated
confidence for a prediction but also to control the signif-
icance level that affects the risk of incorrect predictions.
For a safety critical system, ideally the significance level
ϵ could be selected to be 0. However, in this case the set
predictor will return all classes as possible. In CPS, the
significance level ϵ can be selected based on the require-
ments of the application to ensure a desirable rate. In
this case, we assume that set predictions with multiple
classes, i.e. |Γϵ| > 1, lead to a rejection of the input
and require human intervention. In this case, it is desir-
able to minimize the number of test inputs with multiple
predictions.
Alternatively, we can select ϵ to the smallest value that

aims to eliminate test inputs with multiple predictions.
Given a validation set, we compute the number of predic-
tions with multiple classes for different values of ϵ and
we select the value that produced the minimum number.

6. EVALUATION

The objective of the evaluation is to compare the valid-
ity and efficiency (size of set predictions) as well as the
computational efficiency of the monitoring algorithm for
different nonconformity functions as well as a baseline
ICP approach that takes place in the input space.

6.1. Experimental Setup
For the experiments, we use two datasets. First, the
German Traffic Sign Recognition Benchmark (GTSRB)
dataset is a collection of traffic sign images to be clas-
sified in 43 classes (each class corresponds to a type of
traffic sign) [20]. It has 26640 labeled images of various
sizes between 15x15 to 250x250 depending on the dis-
tance of the traffic sign to the vehicle. We convert all the
images to 32x32 pixels. For this dataset, MobileNet, a

popular Convolutional Neural Network (CNN) architec-
ture that provides low-latency and low-power models, is
used as the network architecture [9]. We use width mul-
tiplierα = 1 for the convolutional layers and a fully con-
nected penultimate layer of size 128 is used to compute
the encodings for the k-NN, 1-NN, and nearest centroid
nonconformity functions.
The second dataset is the SCITOS-G5 wall following

robot navigation dataset [5]. This dataset contains 5456
raw values of the measurements of 24 ultrasound sen-
sors of a robot that are used to select actions (”Move-
Forward”, ”Sharp-Right-Turn”,”Slight-Left-Turn”, and
”Slight-Right-Turn”) so that the robot stays close to the
wall. Since the inputs in the SCITOS-G5 dataset come
from 24 sensors, we treat them as vectors and use a fully
connected neural network with one hidden layer. The
number of hidden units, h = 20, is selected using a sim-
ple rule of thumb h =

⌊
2a
3 + C

⌋
, where a = 24 is the

number of inputs and C the number of classes [12]. The
penultimate layer that is used to compute the encodings
is the single hidden layer. For the baseline ICP applica-
tion we use the k-NN, 1-NN, and nearest centroid non-
conformity functions applied input space instead of an
embedding space to see if the embedding space improves
the validity and efficiency in the CPS domain.
For each dataset, we use 10% of the available data for

testing. From the the rest 90% of the data, 80% is used
for training and 20% for calibration and/or validation.
For the k-NN nonconformity function, we use k = 15.
All the experiments run in a desktop computer equipped
with and Intel(R) Core(TM) i9-9900K CPU and 32 GB
RAMand a Geforce RTX 2080GPUwith 8 GBmemory.

6.2. Assurance Monitoring
First, we illustrate the assurance monitoring algorithm
with a test example from the GSTRB dataset. Fig-
ure 3 shows the image of a left turn sign. Using k-
NN as the nonconformity function, Algorithm 1 can be
used to generate sets of possible predicted labels. In
the following, we vary the significance level ϵ and we
report the set predictions. When ϵ ∈ [0.001, 0.003),
the possible labels are ’attention_slippery’, ’turn_left’,
’turn_straight_right’, ’turn_right_down’; when ϵ ∈
[0.003, 0.018), the possible labels are ’turn_left’,
’turn_right_down’; and finally when ϵ ∈[0.018,0.1], the
algorithm produces a single prediction ’turn_left’ which
is obviously correct. The images of the signs in the above
candidate classes can be seen in Figure 4.
As expected, small values of the significance level in-
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Figure 3: Left turn sign

crease the number of multiple predictions. The reason
is that labels corresponding to images with some simi-
larity are also considered possible. Larger significance
levels generate single valued sets, however, the error rate
is also higher.

6.3. Performance and Calibration

The next goal is to evaluate the performance of the al-
gorithm using testing datasets. First, the DNN model is
trained and early stopping is used to reduce overfitting.
The mobileNet used for the GTSRB dataset has train-
ing accuracy 98.1% and test accuracy 96.5%. The sim-
ple feedforward neural network used for the SCITOS-G5
navigation dataset has training accuracy 88.5% and test
accuracy 86.8%.
We would like to verify that the conformal prediction

framework results is well-calibrated measures of confi-
dence for the selected nonconformity functions and the
error rate of the monitoring algorithm is bounded by the
significance level. We compute the percentage of incor-
rect predictions and we plot the cumulative error for dif-
ferent values of ϵ. In Figure 5, we plot the cumulative er-
ror for three different values of ϵ for the GTSRB dataset
using the Nearest Centroid nonconformity function. The
results show that the error rate is bounded by ϵ. Simi-
lar behavior is observed using the other nonconformity
functions.
In addition, we evaluate the performance and calibra-

tion of the obtained confidence values. Figure 6 shows
the performance (% of multiple predictions) and calibra-
tion (% of error prediction) curve when ϵ ∈ [0.001, 0.1]
for the GTSRB dataset using the Nearest Centroid non-
conformity function. The number of multiple predic-

(a) Attention slippery (b) Turn left

(c) Turn right down (d) Turn straight right

Figure 4: The candidate classes for the example left turn
sign input

tions decreases fast as ϵ increases. Further, the error rate
is well-calibrated model and increases linearly with ϵ.

6.4. Selecting the Significance Level

For monitoring of CPS, one can either choose ϵ to be
small enough given the system requirements or compute
ϵ to minimize the number of multiple predictions. Since
the number of multiple prediction decreases when ϵ in-
creases, we can select ϵ as the smallest value that elimi-
nates multiple predictions for a validation set.
Table 1 shows the results for the datasets and the var-

ious nonconformity functions. First using the calibra-
tion/validation dataset, we select ϵ to eliminate sets of
multiple predictions and we report the errors in the pre-
dictions for the testing dataset. The algorithm did not
generate any set with multiple predictions for the test-
ing datasets for any of the nonconformity functions. The
nonconformity functions computed using the softmax
layer result in a slightly larger error but the results show
that the error rates are well-calibrated for all nonconfor-
mity functions. The results for the GTSRB dataset ex-
hibit smaller error than the SCITOS-G5 results because
the underlying model has much better accuracy.
Table 1 also reports the results for ϵ = 0.01 and

ϵ = 0.02 including the percentage of errors and multiple
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Estimate ϵ ϵ = 0.01 ϵ = 0.02
Dataset NC Functions ϵ Errors Errors Multiples Errors Multiples

GTSRB

k-NN 0.021 2.3% 1.1% 3.5% 2% 0.2%
1-NN 0.016 2.3% 1.3% 2.1% 2.4% 0%

Nearest Centroid 0.026 2.8% 1.2% 4.8% 2.1% 1.8%
Margin 0.034 3.4% 0.9% 7.1% 1.8% 3.4%

Brier Score 0.035 3.6% 0.9% 7.1% 2% 3.5%
TS Margin 0.034 3.4% 0.7% 8.8% 1.7% 3.7%

TS Brier Score 0.035 3.6% 0.7% 8.8% 1.7% 4.1%

SCITOS-G5

k-NN 0.14 16.5% 0.9% 63% 1.3% 51.4%
1-NN 0.092 10.4% 1.8% 43.6% 2.7% 33.5%

Nearest Centroid 0.367 35.5% 0.9% 93.9% 1% 93.4%
Margin 0.109 13.2% 0.7% 58.6% 1.3% 46.7%

Brier Score 0.113 13.4% 0.7% 58.8% 1.3% 47.3%
TS Margin 0.109 13.2% 0.9% 52.2% 1.6% 40.8%

TS Brier Score 0.113 13.2% 0.9% 52.2% 1.5% 41.8%

Table 1: Test results for different values of ϵ
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Figure 5: Cumulative error curve

predictions. For example, in the case of the k-NN non-
conformitymeasure and ϵ = 0.01 the error is as expected
close to 1% but we also have 3.5% predictions with mul-
tiple classes. The nonconformity functions computed
based on the representations of the penultimate layer re-
sult in more efficient predictions. Temperature scaling
does not seem to affect the results for nonconformity
functions computed using the softmax layer. It should
be noted that Hinge nonconformity function did not per-
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Figure 6: Calibration and performance curve

form well and the corresponding results are not included
in the table.
For comparison we apply a baseline method using ICP

directly on the inputs. In Table 2, we present the results
using the same datasets and nonconformity functions.
The baseline method requires more sets of multiple pre-
dictions to achieve a given confidence level and the sig-
nificance level ϵ required to produce single predictions
is significantly larger.
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Estimate ϵ ϵ = 0.01 ϵ = 0.02
Dataset NC Functions ϵ Errors Errors Multiples Errors Multiples

GTSRB
k-NN 0.198 16.9% 0% 100% 1.8% 76.5%
1-NN — — — — — —

Nearest Centroid 0.825 85.3% 2.5% 100% 3.5% 100%

SCITOS-G5
k-NN 0.198 22.3% 0.7% 72.2% 1.6% 58.4%
1-NN 0.122 12.6% 1.1% 57.9% 3.6% 37.5%

Nearest Centroid 0.428 43.5% 0.5% 96.9% 0.7% 95.9%

Table 2: Test results for different values of ϵ using the baseline ICP with raw inputs

6.5. Computational Efficiency

In order to evaluate if the approach can be used for real-
timemonitoring of CPS, wemeasure the execution times
and the memory requirements. Different nonconformity
functions lead to different execution times and mem-
ory requirements. We compare the average execution
time over the testing datasets for generating a prediction
set after the model receives a new test input in Table 3.
The 1-NN nonconformity function on the input space of
the GTSRB dataset has excessive memory requirements.
Below we present the computational requirements for
each nonconformity function and explain the higher re-
quirements of the 1-NN function in more detail.
Table 3 reports the average execution time for each

test input and the required memory space using differ-
ent nonconformity functions. The GTSRB dataset has
19180 training data each represented by an encoding of
size 128 while the SCITOS-G5 dataset has 3928 training
data each represented by an encoding of size 20. The ex-
ecution times for the different nonconformity functions
are very similar. All the nonconformity functions require
storing the trained DNN and the calibration NC scores
which are used for computing the test NC scores online.
However, it should be noted that the DNN is stored any-
way for performing the original task. In the k-NN case,
the encodings of the training data are stored in a k − d
tree [2] that is used to compute efficiently the k near-
est neighbors. This data structure is used both for the
k-NN and 1-NN NC functions. In the 1-NN case, it is
required to find the nearest neighbor in the training data
for each possible class which is computationally expen-
sive resulting in larger execution time. The nearest cen-
troid nonconformity function requires storing only the
centroids for each class and the additional memory re-
quired is minimal.
In conclusion, the evaluation results demonstrate that

monitoring based on the conformal prediction frame-

work using embedding representations of the learned
models has well-calibrated error rates and can minimize
the number of alarms due to predictions with multiple
classes. The estimated confidence bounds that will pro-
duce sets of single predictions are larger than the baseline
ICP application on the inputs. Further, the approach al-
lows selecting the significance level to trade-off errors
and alarms. Finally, the use of the embedding space re-
duces the memory requirements and the execution time
when the nonconformity function needs to have access
to the whole dataset which justifies the use of ICP in the
learned embedding space.

7. CONCLUDING REMARKS

Cyber-physical systems (CPS) incorporate machine
learning components such as DNNs for performing var-
ious tasks such as perception of the environment. Al-
though DNNs offer advanced capabilities, they must
be complemented by engineering methods and practices
that allow effective integration in CPS. The paper con-
siders the problem of complementing the prediction of
DNNs with a computation of confidence. For classifica-
tion tasks, in addition to the class prediction, we compute
set and confidence predictors using the conformal pre-
diction framework and we present computationally effi-
cient algorithms based on representations learned by the
underlying model that can be used for real-time moni-
toring. We perform an empirical evaluation of the ap-
proach using a traffic sign recognition benchmark and a
robot navigation dataset. The evaluation results demon-
strate that monitoring based on the conformal predic-
tion framework using embedding representations of the
learned models has well-calibrated error rates and can
minimize the number of alarms due to predictions with
multiple classes. Further, the approach allows selecting
the significance level to trade-off errors and alarms. Fi-
nally, the approach is computationally efficient and can
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GTSRB SCITOS-G5
NC Functions Execution Time Memory Execution Time Memory
k-NN (baseline) 81.1ms 836.2 MB 1.3ms 1.7 MB
1-NN (baseline) — — 2.8ms 3.4 MB

Nearest Centroid (baseline) 10.1ms 1.1 MB 1ms 8.8 kB
k-NN 6.9ms 71.5 MB 1.3ms 1.13 MB
1-NN 30ms 1.4 GB 3.1ms 4.13 MB

Nearest Centroid 7.2ms 40.7 MB 1ms 39 kB
Margin 7ms 40.7 MB 1.1ms 38.3 kB

Brier Score 6.8ms 40.7 MB 1.1ms 38.3 kB
TS Margin 7.1ms 40.7 MB 1ms 38.3 kB

TS Brier Score 6.9ms 40.7 MB 1.1ms 38.3 kB

Table 3: Execution Times and Memory Requirements

be used for real-time monitoring of CPS.
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