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ABSTRACT
Cyber-Physical Systems (CPS) are used in many applications where
theymust perform complex tasks with a high degree of autonomy in
uncertain environments. Traditional design flows based on domain
knowledge and analytical models are often impractical for tasks
such as perception, planning in uncertain environments, control
with ill-defined objectives, etc. Machine learning based techniques
have demonstrated good performance for such difficult tasks, lead-
ing to the introduction of Learning-Enabled Components (LEC)
in CPS. Model based design techniques have been successful in
the development of traditional CPS, and toolchains which apply
these techniques to CPS with LECs are being actively developed.
As LECs are critically dependent on training and data, one of the
key challenges is to build design automation for them. In this pa-
per, we examine the development of an autonomous Unmanned
Underwater Vehicle (UUV) using the Assurance-based Learning-
enabled Cyber-physical systems (ALC) Toolchain. Each stage of the
development cycle is described including architectural modeling,
data collection, LEC training, LEC evaluation and verification, and
system-level assurance.

CCS CONCEPTS
• Software and its engineering→ Application specific devel-
opment environments;
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ACRONYMS
ANN Artificial Neural Network
ALC Assurance-based Learning-enabled CPS
CPS Cyber Physical System
CNN Convolutional Neural Network
GSN Goal Structuring Notation
LEC Learning Enabled Component
UUV Unmanned Underwater Vehicle
ROS Robot Operating System
URI Uniform Resource Identifier

1 INTRODUCTION
Cyber Physical Systems (CPSs) are used for a wide variety of appli-
cations in many domains which often require significant or total
autonomy. Moreover, these systems frequently operate in highly
uncertain environments where it is infeasible to explicitly design for
all possible situationswithin the environment. Data-drivenmethods
such as machine learning are being applied in CPS development to
address these challenges and Learning Enabled Components (LECs)
have demonstrated good performance for a variety of traditionally
difficult tasks such as object detection and tracking [15], robot path
planning in urban environments [33], and attack detection in smart
power grids [27]. However, little tool support exists currently for
the development of these systems.

Traceability and reproducibility at every step of development
is necessary for CPSs, particularly those used in safety-critical or
mission-critical applications. These systems require strong safety
assurance supported by well-documented evidence. Regulations for
these systems often require that developers follow specific proce-
dures and provide documentation of the development process (eg.
Design Assurance Levels (DAL) defined in DO-178C [30]). Addition-
ally, traceability and reproducibility are necessary for maintaining
data provenance when working with LECs. Since LECs are trained
with data instead of derived from analytical models, the quality of
an LEC is dependent on the history and quality of the training data.
Manually maintaining traceability and reproducibility during the
design cycle - including the large data sets used for LECs - is a time-
consuming and error-prone process. Instead, this responsibility
should be automated by an appropriate development environment.

Integrated tool support for the development of CPSs which
use LECs is an active area of research, and the Assurance-based
Learning-enabled CPS (ALC) Toolchain [13] is one such develop-
ment environment. In this paper, we examine the development of
an autonomous Unmanned Underwater Vehicle (UUV) using the
ALC Toolchain with discussion on each stage of the development
cycle: architectural modeling, data collection, LEC training, LEC
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Figure 1: ALC Toolchain development workflow.
evaluation and verification, and system-level assurance. Addition-
ally, key features of the toolchain are described including the ability
to rapidly iterate during the design cycle, automated data tracking
and management, and reproducible experiments and LEC training.

The rest of this paper is organized as follows. First, Section 2
discusses related research regarding challenges unique to machine-
learning and existing development environments for CPS. Section 3
briefly describes the ALC Toolchain and presents the UUV example
used as a case study. Next, Section 4 outlines the modeling concepts
provided by the toolchain, followed by a description of the devel-
opment process for an LEC in Section 5. Section 6 describes the
available LEC verification tools and assurance techniques. Section 7
gives a brief explanation of how the various data management fea-
tures are implemented in the toolchain. Finally, Section 8 discusses
possible directions for future research and concluding remarks.

2 RELATED RESEARCH
Conventional CPS design is a well studied problem with many
supporting tools available. In particular, model-based techniques
have been effective for the development of CPSs with conventional,
analytically derived components. For example, the Model-based
Demonstrator for Smart and Safe Cyber Physical Systems (MoDeS3)
[36] combined several modeling languages and techniques for the
development of a model railway system. The authors modeled the
system architecture with SysML block diagrams, then used code
generation tools provided by the Gamma Statechart Composition
Framework [24] for implementation of the software components.
Multiple safety assurance techniques including formal verification
methods and run-time monitors were utilized. Tool sets such as the
INTO-CPS platform [20] support multi-disciplinary development
by providing environments which integrate several modeling lan-
guages. Similarly, existing standards such as the Functional Mockup
Interface (FMI) [3] and System Structure and Parameterization (SSP)
[18] provide tool-independent specifications for co-simulation of
these multi-domain systems. However, for a large class of problems
it is becoming clear that machine learning will outperform conven-
tional model-derived techniques due to the difficulty of developing
accurate analytical models. Current CPS tools do not consider how

the existing model-based development techniques can be extended
for machine learning.

Machine learning solutions often outperform traditional tech-
niques for a variety of challenging problems, but development of
these systems also presents unique challenges. Sculley et al.[31]
consider the hidden costs of machine learning with the software
engineering concept of technical debt. They examine several ways
in which machine learning can incur significant costs both during
the development cycle and for long-term maintenance of a system.
Methods to identify and mitigate these costs are presented, several
of which can be enforced with an appropriate methodology and
automated with supporting tools (e.g. careful management of data
dependencies among components and reproducibility of training
and evaluation).

Various existing tools facilitate development of machine learn-
ing models, particularly for users who are not experts in the field.
DeepForge [7] is one such environment which provides a model-
based approach to machine learning development with concepts
for defining neural network architectures and corresponding train-
ing pipelines. DeepForge also uses a version control system to
ensure traceability and reproducibility during development. For
reinforcement-learning techniques, the OpenAI Gym [6] toolkit
provides a standardized set of environments for development and
comparison of different learning algorithms. The Google Colab-
oratory 1 is another example based on the Jupyter Notebook 2

interactive environment with strong support for machine-learning,
but provides an ad-hoc environment to the user instead of following
any predefined methodology. Additionally, the TensorFlow [1] soft-
ware library provides the TensorBoard toolkit for visualization of
TensorFlow graphs including machine learning models. These tools
simplify and automate much of the machine learning development
process, but they do not sufficiently maintain data provenance par-
ticularly when using custom generated data. However, these tools
are not concerned with how these techniques can be incorporated
into a larger development framework tailored for CPSs.

1colab.research.google.com
2jupyter.org

colab.research.google.com
jupyter.org
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3 ALC TOOLCHAIN
The ALC Toolchain is an integrated set of tools and corresponding
workflows specifically tailored for model-based development of
CPSs that utilize learning-enabled components. Figure 1 shows an
overview diagram of the general workflow which is detailed in the
following sections. In order to promote reproducibility and main-
tain data provenance, all models, training data, and contextual data
are stored in a version-controlled database and data management
is automated. The toolchain is built on the WebGME infrastructure
[22] which provides a web-based, collaborative environment where
changes are automatically and immediately propagated to all ac-
tive users, not unlike in Google Docs 3. More detail on how these
features are implemented can be found in Section 7.

For this paper, we developed an autonomous UUV controller
using the ALC Toolchain, as a case study. The goal of this sys-
tem is to follow a pipe placed on the seafloor using images from
a forward-looking camera. The system was developed following a
component based software engineering paradigm [35]. Currently,
the ALC Toolchain supports the Robot Operating System (ROS) 4
[28] middleware which provides a communication framework for
exchanging messages between components, but support for other
similar frameworks can be added. Experiments were performed
using the Gazebo 5 [17] simulation environment with the UUV Sim-
ulator 6 [21] extension packages. The system is used as a running
example throughout this paper and is described in more detail in
the following sections.

4 SYSTEM MODELING
The first step in CPS development is specification of the system ar-
chitecture and the various components it is composed of. The ALC
Toolchain provides modeling concepts for representing components
and their interfaces, the ROS message types used to communicate
between components, composed system architecture models, and
environment models. Currently, architectural models in the ALC
Toolchain can be used to generate executable ROS launch deploy-
ment files for the composed system. However, no behavioral code
is generated for individual components.

4.1 Message Type and Component Libraries
Before a system architecture model of the UUV can be constructed,
the available message types and components must be defined in cor-
responding block libraries. Themessage library defines the structure
of all ROS message types used in the system. Message definitions
are similar to C-style structures, and eachmessage type is named for
both the ROS package where it is defined and the data it represents.

Once the available message types have been defined, blocks for
each component in the system can be constructed in the component
library. First a component block defines an interface by declaring
the input and output ports used by the component. Each port has an
associated message type from the message library and a topic name
used to identify the port in the ROS publish/subscribe messaging
system. Component blocks may contain any necessary parameter

3docs.google.com
4ros.org
5gazebosim.org
6uuvsimulator.github.io

definitions as well as a ROS launch file for initializing and configur-
ing the component. Each component has an associated block-type
such as "hardware", "software", or "implementation" which is dis-
cussed in more detail in section 4.2. Additionally, standard com-
ponent blocks may be composed hierarchically to form complex
components. For our UUV example, the message and component
libraries contained 27 and 21 elements respectively.

4.2 System Architecture Model
The ALC Toolchain provides an extended version of block diagram
models from the SysML modeling standard [26] for system architec-
ture modeling. Blocks from the component library are instantiated
in a system architecture model and their ports can be connected to
form a composed system model. Since all component blocks in a
model are instances of the original block defined in the component
library, any changes made to the original block are automatically
propagated to all instances. This approach promotes reusability and
maintainability of components across multiple system models.

For our UUV example, a complete system architecture model
was constructed including both hardware and software compo-
nents. Figure 2 shows a portion of this model containing the vehicle
controller software which must autonomously operate the UUV to
follow a submerged pipeline placed on the seafloor. This controller
consists of four primary components: a path planner, a PID con-
troller, and thruster and fin mappings. The path planner component
consumes sensor inputs (images from a front-facing camera and
vehicle odometry data) and produces a desired heading value (i.e.
desired vehicle yaw). Multiple implementations of this component
were used as discussed in Section 4.3. The PID controller calculates
the error between the current and desired vehicle heading and ap-
plies a correction to eliminate this error. Additionally, vehicle pitch
and roll components are controlled with fixed setpoints for the de-
sired depth and roll. Finally, the thruster and fin mappings translate
desired thrust and vehicle orientation into actuator commands for
the propeller and control fins respectively.

4.3 Assembly Model
During the design of a CPS, there may be multiple implementation
options for a particular component. This is particularly true during
the development of LECs where training data may be generated
by a conventional ’controller’ or ’perception’ component and used
to train an LEC. As an example, the path planner in Figure 2 is a
complex component shown in an exploded view so that the various
sub-components can be seen. Three of these sub-components are
labeled as implementations, indicating that there are three differ-
ent alternatives available which are capable of fulfilling the path
planner’s requirements. In this case the three options are as follows:

• A conventional control algorithm which receives ground-
truth data from the simulator about the position of the pipe
being tracked. Note that this data would not be available
in a real-world deployment, making this implementation a
simulation-only option.

• An LEC using a neural network trained with supervised
learning to mimic the conventional algorithm. The LEC only
takes camera sensor images as input and can be used in both
real and simulated environments.

docs.google.com
gazebosim.org
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Figure 2: UUV controller architecture diagram.
• A waypoint following algorithm which follows a set of fixed
waypoints provided as a static parameter.

Assembly models refine an architectural model by selecting a
concrete implementation from the available options for each com-
ponent with multiple implementation options. In our example, the
path planner component is the only component with alternative op-
tions and there are only three valid assembly models of our system
(one for each path planner implementation).

5 LEC CONSTRUCTION
Once the system architecture and available assembly models have
been defined, the user can move to the next step in the development
workflow: LEC construction. LEC construction involves multiple
sub-steps which vary depending on the training method (ie. super-
vised or reinforcement learning). These include data generation,
LEC training, and LEC evaluation as described in the following
sections.

5.1 Data Generation
Development of an LEC is a data-driven process that requires gen-
erating sufficient data from the system for training the LEC. Ex-
periment models allow the developer to define an execution of a
system in a particular (simulated) environment. Construction of
an experiment model begins by selecting the desired system con-
figuration from one of the available assembly models. Next, an
environment block is used to define the simulation environment and
set any environmental parameters. Mission and Execution blocks
contain parameters which define the objective of the experiment
and any additional housekeeping settings (e.g. maximum timeout,
startup delays, data storage location, etc.) respectively. Experiment
models contain the information necessary to configure a simulation
and can be deployed and executed on an appropriately configured
server. When an execution run is complete, all generated data is
automatically stored and made available in the ALC Toolchain.

Experiment models can be extended with additional blocks for
more functionality. Campaign blocks can define multiple possible
values for a parameter and are useful for performing multiple exper-
iments while varying environmental conditions, mission objectives,
or system parameters. When a single campaign block specifies sets
of values for multiple parameters, the complete parameter set is

defined as the Cartesian product of all the individual sets. When a
campaign is executed, the corresponding experiment is executed
once for each valid combination of parameters in this set. Post pro-
cessing blocks define Python code to be executed on the generated
data after an experiment completes. These blocks are often used
for data analysis tasks such as calculating performance metrics,
plotting relevant data, etc.

To generate training data for the UUV example, we created an
experiment model based on the conventional path planner assem-
bly described in Section 4.3. The experiment was configured to
use Gazebo with the UUV Simulator extensions and used a flat,
empty seabed for the operating environment. For this system, the
objective of an experiment always involves following a pipe placed
on the seafloor. However, this can be accomplished in one of three
ways: autonomous control by the path planner component, manual
control using a joystick, or by following a predefined set of way-
points. The autonomous control option was selected by setting the
mission parameters appropriately.

A campaign block was added which defined six different pipe
geometries, each consisting two straight sections joined by a bend
of varying angle. The campaign specified that each pipe should be
tested in both standard and mirrored orientations (i.e. pipe with
a left-hand bend would be mirrored to test the right-hand bend
case). Additionally, each experiment was done once following the
ideal path as closely as possible, then again with noise added to the
path in order to generate data in non-ideal conditions resulting in
a total of 24 experiments. All available simulation data was stored
by the ROS recorder utility in the ROS bag file format and used for
training the LEC as described in the following section.

5.2 LEC Training
The next step in the development of an LEC is training a machine
learning model. The ALC Toolchain supports training of Artificial
Neural Networks (ANNs) [14] using one of two classes of machine
learning algorithms: supervised or reinforcement learning (For
detailed introductions see [11] and [34] respectively). Both classifi-
cation (discrete output range) and regression (continuous output
range) based models are supported.

5.2.1 Supervised Learning. The goal of supervised learning is
to approximate the ideal mapping function from a set of input
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variables to a corresponding set of output variables as closely as
possible. This requires generating labeled data where the correct
value of each output point is known before starting LEC training.
In CPS design, supervised learning is commonly used to imitate
an existing controller that cannot be used in a real-world system
deployment. For instance, our UUV example generates labeled data
in a simulated environment with a controller which uses the true
location of the submerged pipeline to plan an ideal path for the
vehicle. However, the true location of the pipeline would not be
available in a real-world deployment. Instead, an LEC was trained
to approximate the ideal controller using images from the forward-
looking camera as input.

In the ALC Toolchain, training of an LEC using a supervised
learning approach is defined by a SL Training model. Constructing
this model starts with the definition of an LECmodel which specifies
the desired ANN architecture as well as basic formatting functions
used to interface with the toolchain. A training data block specifies
which of the available data sets should be used to train the ANN.
The available data sets include any data generated by Experiment
models (described in Section 5.1) and any data generated externally
from the ALC Toolchain which has been uploaded using the pro-
vided utility. A training parameter block defines hyperparameters
which configure the training algorithm. Finally, an optional post
processing block defines Python code to be run after training is
complete.

Design of a suitable ANN architecture (or selection from exist-
ing architectures) is often an iterative process driven by empirical
results. Performance indicators including model loss and accuracy
against a testing data set are the most common evaluation metrics.
CPSs often operate in resource-constrained environments and must
also consider factors such as model size, inference time, and power
consumption. To support rapid design iterations, a new LEC archi-
tecture can be tested simply by updating the architecture definition
- provided as a Keras[8] model - within the LEC model block and
executing the SL Training model.

In our UUV example, three existing Convolutional Neural Net-
work (CNN) architectures of varying complexity were evaluated.
First, an architecture presented by Rausch et al. for end-to-end
steering control of a simulated autonomous vehicle [29]. This ar-
chitecture, hereafter referred to as Rausch-Net, consists of three
convolutional layers followed by a single fully-connected layer.
Second, the Nvidia DAVE-2 architecture [4] developed for a sim-
ilar purpose and tested using a real vehicle on public roadways.
The DAVE-2 architecture consists of five convolutional layers fol-
lowed by three fully-connected layers. Third, a modified version of
AlexNet [19] with only one convolutional pipeline instead of two
known as CaffeNet 7. CaffeNet contains five convolutional layers
followed by two fully connected layers. The final output layer in
each architecture was modified to output a single value.

The LEC model block included a simple Python class (33 lines
of code) with functions for extracting and formatting the desired
data streams from the full data set. In particular, this class used
OpenCV [5] to resize images from the forward-looking camera
from their original 768 x 492 resolution to the appropriate size for
each CNN architecture. The data set generated from the Campaign

7https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet

Table 1: Comparison of CNN Architectures

Model Name Size (MB) Test Set Heading Error
Loss (MSE) (RMSE, deg)

Rausch-Net 308.3 0.0020 0.590
DAVE-2 3.0 0.0018 0.439
CaffeNet 535.1 0.0453 3.643

described in Section 5.1 was selected for training data. A random
split was used to divide this data set into 80% training data and
20% testing data. Table 1 provides a comparison of the three tested
CNN architectures. The ’Size’ column reflects the size of the trained
network when stored on the hard-disk using the save function
provided by Keras and is an indication of overall model complexity.
The ’Test Set Loss’ column lists the Mean Squared Error (MSE) of
each trained model when used to predict the outputs of each point
in the testing data set. The final column labeled ’Heading Error’ is
discussed in Section 5.3.

5.2.2 Reinforcement Learning. Reinforcement Learning (RL) has
evolved to be a powerful data-driven technique in which the learn-
ing (or training) happens in a closed-loop interaction between the
agent and environment. Unlike supervised learning, RL does not
require labeled data during the training process. Instead the goal
of reinforcement learning is to learn a policy of selecting the best
action from a list of actions for a given state, that maximizes the
reward function. Similar to supervised learning, RL also has two
phases called the exploration and exploitation phases, which corre-
spond to training and testing respectively. The entire learning in
the exploration phase is performed using a reward based system,
where the agent receives a positive reward for correct actions, and
a negative reward otherwise. During the exploitation phase, the
agent uses the learned actions (normally stored as tables, or trained
neural networks). Several RL algorithms exist with various learn-
ing strategies (model-based vs. model-free) and optimality criteria
(policy vs. value), and the ALC toolchain currently supports the
actor-critic method [23].

In supervised learning, there is a clear separation between data
collection and training activities. However, RL relies on learning
by selecting actions at run-time, then using a reward based evalua-
tion system to converge on optimal actions with increased agent-
environment interactions. This process requires a closed loop agent-
environment simulation, and the RL Training model available in the
ALC Toolchain is very similar to the Experiment model described in
Section 5.1. The primary difference is the addition of an RL Agent
block which defines both the actor and critic models used for train-
ing. While RL learning is supported by the ALC Toolchain, it was
not utilized by our UUV example.

5.3 LEC Evaluation
The training metrics discussed in Section 5.2.1 are useful for deter-
mining how well a particular ANN has learned to approximate the
provided training data set. However, these metrics are not always
good indicators for how well a trained LEC will perform when
deployed as part of a larger system. This is often a result of an
incomplete training data set which does not capture a sufficient
range of possible inputs. For LECs used as control components, this
issue is more pronounced since a trained LEC controller may drive

https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
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Figure 3: Post processing plots fromDAVE-2 LEC evaluation
experiment. LEC predicted and ideal headings vs. time (left).
Pitch control and vehicle depth error signals vs. time (right).

a system into previously unseen states which were not represented
in the training data set. Instead of relying on training metrics, a
trained LEC can be evaluated as part of an integrated system using
an Experiment model.

In order to evaluate the three LEC architectures trained for our
UUV example, an experiment model was constructed similar to
the model described in Section 5.1 with a few differences. First,
the assembly model was changed to use the LEC implementation
option for the path planner component instead of the conventional
implementation. Second, a new pipeline model was selected which
was not contained in the data set used for training. This pipeline
model was similar to the models used for training, but included
multiple bends - one 60° bend to the left followed by a 30° bend to
the right placed a short distance apart. Finally, additional Python
code was added to the post processing block which calculated the
Root Mean Squared Error (RMSE) between the heading predicted
by each LEC and the ideal heading provided by the conventional
path planner.

The calculated heading RMSE values, listed in degrees, are in
the last column of Table 1. The DAVE-2 architecture outperformed
both other networks in both test set loss and evaluated heading
error for our UUV path planner use-case, while also being the
smallest and simplest architecture tested. The amount of training
data generated may not be sufficient to accurately train the two
larger networks. Additionally, CaffeNet was originally designed for
image classification tasks which may have contributed to the order
of magnitude accuracy decrease.

The left plot in Figure 3 shows both the LEC predicted heading
and ideal heading values against time when using the trained DAVE-
2 architecture. The LEC predicted heading contains significant noise,
but otherwise closely tracks the ideal heading value. A similar
plot was automatically generated for each evaluation experiment
and made available to the user in an interactive Jupyter notebook.
While the ALC Toolchain is intended for the development of LECs,
the automatic plotting functions also proved useful for parameter
tuning of the PID-based vehicle depth control. The right plot in
Figure 3 shows the depth error from a fixed setpoint along with
multiple signals for monitoring the current and desired vehicle
pitch.

6 VERIFICATION & ASSURANCE
CPSs used in mission-critical or safety-critical applications demand
high reliability and strong assurance for safety. Safety cases are one

method for safety assurance which requires assembling multiple
sources of supporting evidence (eg. testing data, formal verification,
expert analysis, etc.) into convincing arguments for system-level
safety. This approach has long been accepted by certain industries
(eg. UKMinistry of Defense [25]), and has gained popularity in areas
including CPS software development with more regulating bodies
publishing guidelines and standards for their use (eg. Appendix D of
FAA Unmanned Aircraft Systems Operational Approval document
[2]). The ALC Toolchain uses Goal Structuring Notation (GSN) [16]
to allow for construction of these safety cases.

Machine learning relies on inferring relationships from data
instead of deriving them from analytical models, leading many
systems employing LECs to rely almost entirely on testing results as
the primary source of evidence. However, test data alone is generally
insufficient for assurance of safety-critical systems. Techniques for
formal verification of LECs are an active area of research [32], [37]
which will need to be incorporated into the safety assurance of
these systems. The ALC Toolchain provides the Verification model
concept with some initial support for these tools.

For our UUV example, a safety case was developed where the
primary safety goal of the system is to avoid collision with the
submerged pipeline at all times. Additionally, the system should
keep the pipe in view of the camera while progressing at a set
minimum speed. The completed safety case consisted of approx-
imately 100 total blocks constructed hierarchically. If the formal
verification results invalidate a required system property or if the
system is deemed unsatisfactory after construction of the assur-
ance case, then the developer should return to one of the previous
development stages to address the issue as shown in Figure 1.

7 IMPLEMENTATION
The ALC Toolchain utilizes WebGME’s built-in version control
system to maintain a complete history of all models created and
allow developers to revert their models to any previous state as
needed. However, this system is not suitable for storing the large
data sets generated by simulations and used for training of LECs.
Instead, data files are uploaded to a secondary file storage server and
a Uniform Resource Identifier (URI) is generated containing both
the location and SHA-1 [9] hash of the data. This URI is stored in
the version control system, and the SHA-1 hash algorithm ensures
that data stored on the file storage server remains identical to when
it was originally generated.

Whenever any model is executed, all parameters and configura-
tion data needed to repeat the execution are stored in a metadata
file with the results. This metadata file also contains references to
any artifacts used as inputs to the model in order to maintain data
provenance. Metadata files for LEC training contain the URI of each
data file used in the training set as well as a copy of the parent LEC
metadata if training was continued from a previously trained ANN
model. Similarly, metadata for an evaluation experiment contains
references to any trained LECs used in the experiment. This ensures
that the complete history of any artifact can be traced back to the
original data regardless of how many iterations of the design cycle
are required. Additionally, the toolchain includes a dataset manager
for viewing and analyzing this lineage.
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8 CONCLUSION
We described the development of an LEC for an autonomous UUV
using the ALC Toolchain. This model-based approach provided
significant benefits over an ad-hoc development process by reduc-
ing the time to iterate design cycles, automatically handling data
management and tracking data lineage, ensuring experiments were
reproducible, and providing tools for verification and safety as-
surance. In particular, the toolchain simplifies the development of
ANNs for CPS developers who are not machine-learning experts.

We have also identified possible avenues for future work. First,
techniques for formalization and quantitative evaluation of safety
case arguments have been developed and would be a useful for
CPSs used in safety-critical or mission-critical applications. How-
ever, these techniques have recently been subject to criticism [12]
and further refinement is needed to address the issues identified.
Second, LEC performance is highly dependent on the quality and
coverage of the training data. The ALC Toolchain provides the
Campaign extension to Experiment models to allow for data gener-
ation in a wide variety of possible scenarios. However, the current
method of defining a Campaign is ill-suited to specification of com-
plex scenarios. We are currently integrating a more powerful and
expressive scenario specification language (SCENIC [10]) for this
purpose.
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